PRESSURE JUMP CONDITIONS FOR STOKES EQUATIONS WITH DISCONTINUOUS VISCOSITY IN 2D AND 3D
被引:0
|
作者:
Ito, Kuzufumi
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USANorth Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
Ito, Kuzufumi
[1
,2
]
Li, Zhilin
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USANorth Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
Li, Zhilin
[1
,2
]
Wan, Xiaohai
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Biomath Grad Program, Raleigh, NC 27695 USANorth Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
Wan, Xiaohai
[3
]
机构:
[1] North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] North Carolina State Univ, Biomath Grad Program, Raleigh, NC 27695 USA
In this paper, the jump conditions for the normal derivative of the pressure have been derived for two-phase Stokes (and Navier-Stokes) equations with discontinuous viscosity and singular sources in two and three dimensions. While different jump conditions for the pressure and the velocity can be found in the literature, the jump condition of the normal derivative of the pressure is new. The derivation is based on the idea of the immersed interface method [9, 8] that uses a fixed local coordinate system and the balance of forces along the interface that separates the two phases. The derivation process also provides a way to compute the jump conditions. The jump conditions for the pressure and the velocity are useful in developing accurate numerical methods for two-phase Stokes equations and Navier-Stokes equations.
机构:
Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R ChinaHenan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
Yang, Xin-Guang
Feng, Baowei
论文数: 0引用数: 0
h-index: 0
机构:
Southwestern Univ Finance & Econ, Coll Econ Math, Chengdu 611130, Sichuan, Peoples R ChinaHenan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
Feng, Baowei
Wang, Shubin
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R ChinaHenan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
Wang, Shubin
Lu, Yongjin
论文数: 0引用数: 0
h-index: 0
机构:
Virginia State Univ, Dept Math & Econ, Petersburg, VA 23806 USAHenan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
Lu, Yongjin
Ma, To Fu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, BrazilHenan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
机构:
Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Math & Stat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Math & Stat, Xian 710049, Peoples R China
机构:
Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Math & Stat, Xian 710049, Peoples R China
Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, EnglandXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Math & Stat, Xian 710049, Peoples R China
Zhang, Yan
Xu, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, EnglandXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Math & Stat, Xian 710049, Peoples R China
Xu, Hui
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Math & Stat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Math & Stat, Xian 710049, Peoples R China