COMPARING THE EFFICIENCY OF STRUCTURAL AND FUNCTIONAL METHODS IN MEASUREMENT ERROR MODELS

被引:0
|
作者
Schneeweiss, H. [1 ]
Kukush, A. [2 ]
机构
[1] Univ Munich, Dept Stat, Akad Str 1, D-80799 Munich, Germany
[2] Natl Taras Shevchenko Univ Kyiv, UA-01033 Kiev, Ukraine
关键词
Measurement errors; errors in variables; quasi score; corrected score; structural methods; functional methods; efficiency comparison;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper is a survey of recent investigations by various researchers into the relative efficiencies of structural and functional estimators of the regression parameters in a measurement error model. Structural methods, in particular the quasi-score (QS) method, take advantage of the knowledge of the regressor distribution (if available). Functional methods, in particular the corrected score (CS) method, discard such knowledge and work even if such knowledge is not available. Among other results, it has been shown that QS is more efficient than CS as long as the regressor distribution is completely known. However, if nuisance parameters in the regressor distribution are to be estimated, this no more remains true, in general. But by modifying the QS method, the adverse effect of the nuisance parameters can be overcome. For small measurement errors, the efficiencies of QS and CS become almost indistinguishable, whether nuisance parameters are present or not. QS is (asymptotically) biased if the regressor distribution has been misspecified, while CS is always consistent and thus more robust than QS.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 50 条
  • [31] Constrained Bayes estimation in small area models with functional measurement error
    Torkashvand, Elaheh
    Jozani, Mohammad Jafari
    Torabi, Mahmoud
    TEST, 2016, 25 (04) : 710 - 730
  • [32] MAXIMUM Lq-LIKELIHOOD ESTIMATION IN FUNCTIONAL MEASUREMENT ERROR MODELS
    Gimenez, Patricia
    Guarracino, Lucas
    Galea, Manuel
    STATISTICA SINICA, 2022, 32 (03) : 1723 - 1743
  • [33] Constrained Bayes estimation in small area models with functional measurement error
    Elaheh Torkashvand
    Mohammad Jafari Jozani
    Mahmoud Torabi
    TEST, 2016, 25 : 710 - 730
  • [34] Statistical Methods for Comparing Methods of Measurement
    Pascual-Lledo, Jose-Francisco
    Contreras Santos, Carmen
    Martin Carrasco, Carlos
    ARCHIVOS DE BRONCONEUMOLOGIA, 2008, 44 (10): : 578 - 579
  • [35] Empirical process based on the recursive residuals in functional measurement error models
    Rasekh, A. R.
    STATISTICS, 2006, 40 (03) : 247 - 258
  • [37] Measurement Error Models: From Nonparametric Methods to Deep Neural Networks
    Hu, Zhirui
    Ke, Zheng Tracy
    Liu, Jun S.
    STATISTICAL SCIENCE, 2022, 37 (04) : 473 - 493
  • [38] Functional measurement error in functional regression
    Jadhav, Sneha
    Ma, Shuangge
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (02): : 238 - 258
  • [39] Comparing Methods for Measurement Error Detection in Serial 24-h Hormonal Data
    van der Spoel, Evie
    Choi, Jungyeon
    Roelfsema, Ferdinand
    le Cessie, Saskia
    van Heemst, Diana
    Dekkers, Olaf M.
    JOURNAL OF BIOLOGICAL RHYTHMS, 2019, 34 (04) : 347 - 363
  • [40] Estimating the efficiency of methods for error detection in information storage devices for measurement techniques
    K. Yu. Borisov
    Al. A. Pavlov
    A. A. Pavlov
    P. A. Pavlov
    A. N. Tsarkov
    O. V. Khoruzhenko
    Measurement Techniques, 2012, 55 : 236 - 243