Using Neural Networks to Detect Internal Intruders in VANETs

被引:14
|
作者
Ovasapyan, T. D. [1 ]
Moskvin, D. A. [1 ]
Kalinin, M. O. [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
关键词
Vehicular Ad-Hoc Networks; VANET; radial basis networks; Ad hoc;
D O I
10.3103/S0146411618080199
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers ensuring protection of Vehicular Ad-Hoc Networks (VANET) against malicious nodes. Characteristic performance features of VANETs and threats are analyzed, and current attacks identified. The proposed approach to security provision relies on radial basis neural networks and makes it possible to identify malicious nodes by indicators of behavior.
引用
收藏
页码:954 / 958
页数:5
相关论文
共 50 条
  • [41] Using deep neural networks to detect complex spikes of cerebellar Purkinje cells
    Markanday, Akshay
    Bellet, Joachim
    Bellet, Marie E.
    Inoue, Junya
    Hafed, Ziad M.
    Thier, Peter
    JOURNAL OF NEUROPHYSIOLOGY, 2020, 123 (06) : 2217 - 2234
  • [42] An intelligent system to detect human suspicious activity using deep neural networks
    Ramachandran, Sumalatha
    Palivela, Lakshmi Harika
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4507 - 4518
  • [43] USING DRONES AND DEEP NEURAL NETWORKS TO DETECT HALYOMORPHA HALYS IN ECOLOGICAL ORCHARDS
    Ichim, L.
    Ciciu, R.
    Popescu, D.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 437 - 440
  • [44] Training neural networks to detect freeway incidents by using particle swarm optimization
    Cheu, RL
    Srinivasan, D
    Loo, WH
    FREEWAY OPERATIONS AND TRAFFIC SIGNAL SYSTEMS 2004, 2004, (1867): : 11 - 18
  • [45] Fuzzy Neural Networks to Detect Parkinson Disease
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    Pecori, Riccardo
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [46] Spiking Neural Networks to Detect Temporal Patterns
    Zuters, Janis
    DATABASES AND INFORMATION SYSTEMS V, 2009, 187 : 131 - 142
  • [47] Can Untrained Neural Networks Detect Anomalies?
    Ryu, Seunghyoung
    Yu, Yonggyun
    Seo, Hogeon
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 6477 - 6488
  • [48] Team of Neural Networks to Detect the Type of Ignition
    Guseva, Alena
    Malykhina, Galina
    ADVANCES IN NEURAL COMPUTATION, MACHINE LEARNING, AND COGNITIVE RESEARCH III, 2020, 856 : 392 - 397
  • [49] Application of Neural Networks to Detect Metal Bodies
    Lyasota, D.
    Morozov, V.
    Magro, V.
    2015 IEEE 35TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2015, : 38 - 41
  • [50] Diagnosing internal illnesses using pervasive healthcare computing and neural networks
    Bayraktar, Canan
    Karan, Oguz
    Gumuskaya, Haluk
    WORLD CONFERENCE ON INFORMATION TECHNOLOGY (WCIT-2010), 2011, 3