CONNECTION BETWEEN SOLITONS AND GEOMETRIC PHASES

被引:4
|
作者
BALAKRISHNAN, R
机构
[1] Institute of Mathematical Sciences, Madras, 600 113, C.I.T. Campus
关键词
D O I
10.1016/0375-9601(93)90703-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The connection between moving space curves and soliton dynamics is exploited to show that soliton-supporting systems of a certain class are naturally endowed with a geometric phase density. The phase information is contained in the Lax pair structure associated with soliton evolution. The vanishing of the global (integrated) phase is shown to lead to an infinite number of conserved densities. Explicit expressions for the phase density are given for the modified Korteweg-de Vries, non-linear Schrodinger and sine-Gordon equations.
引用
收藏
页码:239 / 243
页数:5
相关论文
共 50 条
  • [41] Geometric phases in dissipative systems
    Kepler, Thomas B.
    Kagan, Michael L.
    Epstein, Irving R.
    CHAOS, 1991, 1 (04) : 455 - 462
  • [42] Topological properties of geometric phases
    Fujikawa, Kazuo
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (164): : 194 - 202
  • [43] Geometric phases in graphitic cones
    Furtado, Claudio
    Moraes, Fernando
    Carvalho, A. M. de M.
    PHYSICS LETTERS A, 2008, 372 (32) : 5368 - 5371
  • [44] Geometric phases of a vortex in a superfluid
    Polkinghorne, Rodney E. S.
    Groszek, Andrew J.
    Simula, Tapio P.
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [45] Geometric phases in quantum information
    Sjoeqvist, Erik
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (19) : 1311 - 1326
  • [46] Moving walls and geometric phases
    Facchi, Paolo
    Garnero, Giancarlo
    Marmo, Giuseppe
    Samuel, Joseph
    ANNALS OF PHYSICS, 2016, 372 : 201 - 214
  • [47] Cumulants associated with geometric phases
    Hetenyi, Balazs
    Yahyavi, Mohammad
    EPL, 2014, 105 (04)
  • [48] ON GEOMETRIC PHASES AND DYNAMICAL INVARIANTS
    MONTEOLIVA, DB
    KORSCH, HJ
    NUNEZ, JA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (20): : 6897 - 6906
  • [49] Geometric phases and the Rabi Hamiltonian
    Calderon, J.
    De Zela, F.
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [50] Geometric phases and quantum computations
    Margolin, AE
    Strazhev, VI
    Tregubovich, AY
    PHYSICS LETTERS A, 2002, 303 (2-3) : 131 - 134