Walks in Graphs

被引:0
|
作者
Lee, Gilbert [1 ]
机构
[1] Univ Victoria, Victoria, BC, Canada
来源
FORMALIZED MATHEMATICS | 2005年 / 13卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define walks for graphs introduced in [9], introduce walk attributes and functors for walk creation and modification of walks. Subwalks of a walk are also defined. In our rendition, walks are alternating finite sequences of vertices and edges.
引用
收藏
页码:253 / 269
页数:17
相关论文
共 50 条
  • [31] A Relationship between the Walks and the Semi-Edge Walks of Graphs
    Peng HUANG
    Wai Chee SHIU
    Pak Kiu SUN
    Journal of Mathematical Research with Applications, 2017, 37 (05) : 520 - 526
  • [32] Random walks on regular and irregular graphs
    Coppersmith, D
    Feige, U
    Shearer, J
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 301 - 308
  • [33] Localization of quantum walks on finite graphs
    Hu, Yang-Yi
    Chen, Ping-Xing
    CHINESE PHYSICS B, 2016, 25 (12)
  • [34] Exploring complex graphs by random walks
    Tadic, B
    MODELING OF COMPLEX SYSTEMS, 2003, 661 : 24 - 27
  • [35] Random walks on edge transitive graphs
    Palacios, J. L.
    Renom, J. M.
    Statistics & Probability Letters, 37 (01):
  • [36] Random walks and local cuts in graphs
    Chung, Fan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 22 - 32
  • [37] gwViz: Visualisation of quantum walks on graphs
    Berry, Scott D.
    Bourke, Paul
    Wang, Jingbo B.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (10) : 2295 - 2302
  • [38] Coined quantum walks on weighted graphs
    Wong, Thomas G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (47)
  • [39] Sampling Directed Graphs with Random Walks
    Ribeiro, Bruno
    Wang, Pinghui
    Murai, Fabricio
    Towsley, Don
    2012 PROCEEDINGS IEEE INFOCOM, 2012, : 1692 - 1700
  • [40] Localization of quantum walks on finite graphs
    胡杨熠
    陈平形
    Chinese Physics B, 2016, (12) : 172 - 177