REGULARITY FOR THE SINGULAR YAMABE PROBLEM

被引:70
|
作者
MAZZEO, R
机构
关键词
D O I
10.1512/iumj.1991.40.40057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The singular Yamabe problem concerns the existence and nature of complete metrics with constant scalar curvature on the complement of a closed subset, assumed here to be a smooth submanifold, in a compact Riemannian manifold and which are conformal to a metric smooth across the submanifold. Regularity in the form of smooth asymptotic expansions is shown to always hold when the scalar curvature R of the noncompact metric is negative. Leading asymptotic behaviour is shown to exist for 'admissible' solutions when R greater-than-or-equal-to 0. A complete smooth expansion exists if this leading coefficient is smooth, and a complete distributional expansion always exists when R = 0. Solutions to the problem are completely classified when R = 0. The existence of 'inadmissible' periodic solutions when R > 0 is also proved.
引用
收藏
页码:1277 / 1299
页数:23
相关论文
共 50 条
  • [31] Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian
    Garofalo, Nicola
    Ros-Oton, Xavier
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) : 1309 - 1365
  • [32] Boundary regularity at {t=0} for a singular free boundary problem
    Henriques, Eurica
    Urbano, Jose Miguel
    FREE BOUNDARY PROBLEMS: THEORY AND APPLICATIONS, 2007, 154 : 231 - +
  • [33] A NOTE ON THE YAMABE PROBLEM
    Wang Xujia
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (04): : 322 - 326
  • [34] The Yamabe Problem with singularities
    Madani, Farid
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (07): : 575 - 591
  • [35] Hyperbolic Yamabe problem
    De-xing Kong
    Qi Liu
    Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 147 - 163
  • [36] MULTIPLICITY FOR THE YAMABE PROBLEM
    HEBEY, E
    VAUGON, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (02): : 237 - 240
  • [37] Singular Yamabe Metrics by Equivariant Reduction
    Hyder, Ali
    Pistoia, Angela
    Sire, Yannick
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12525 - 12547
  • [38] Hyperbolic Yamabe problem
    Kong De-xing
    Liu Qi
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (02) : 147 - 163
  • [39] Moduli spaces of singular Yamabe metrics
    Mazzeo, R
    Pollack, D
    Uhlenbeck, K
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) : 303 - 344
  • [40] NOTE ON THE YAMABE PROBLEM
    HEBEY, E
    VAUGON, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 96 (01) : 31 - 37