Temperature dependence of the optical fiber cable parameters in subcarrier wave quantum communication systems

被引:0
|
作者
Dubrovskaia, V. D. [1 ]
Chivilikhin, S. A. [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2016年 / 7卷 / 02期
关键词
quantum communications; clock synchronization; temperature dependence of the signal;
D O I
10.17586/2220-8054-2016-7-2-371-377
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A common approach to establishing long-distance synchronization links in quantum communication (QC) systems is based on using optical signals transmitted in cables, where they decay and are distorted. It is necessary to evaluate the transformation of the signal parameters during propagation and their influence on the QC systems. We investigate the temperature dependence of the synchronization signal phase of a subcarrier wave quantum communication system (SCWQC) in optical fiber cables. A temperature model was created in order to determine the signal phase delay in the cable. We estimate the influence of daily temperature fluctuations on the phase delay in ground- and air-based cables. For systems operating with ground-based cables, they do not have any significant impact on the synchronization of the signal phase. However, for systems operating through air-based cables, phase adjustment is required every 158 ms for stable operation. This allowed us to optimize the parameters for a calibration procedure of a previously-developed SCWQC system, increasing the overall sifted key generation rate.
引用
收藏
页码:371 / 377
页数:7
相关论文
共 50 条
  • [21] An optical bi-phase modulator for millimeter wave subcarrier systems
    Thomas, HJ
    Imai, N
    Ogawa, E
    IEICE TRANSACTIONS ON ELECTRONICS, 1996, E79C (01) : 32 - 39
  • [22] Analysis on transmission characteristics of special optical fiber cable for power communication on upgrading of optical communication system
    Zhao, Hongbo
    Gao, Peng
    Wang, Yang
    Ding, Huixia
    Dianwang Jishu/Power System Technology, 2010, 34 (09): : 216 - 220
  • [23] Quantum physics in optical communication systems
    McKinstrie, C. J.
    2011 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION (OFC/NFOEC) AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, 2011,
  • [24] Quantum noise in optical communication systems
    Wei, HQ
    Plant, DV
    OPTICAL MODELING AND PERFORMANCE PREDICTIONS, 2003, 5178 : 139 - 147
  • [25] High Voltage Cable Systems with Integrated Optical Fiber for Monitoring Cable Lines
    Bezprozvannych, G., V
    Zolotaryov, V. M.
    Antonets, Yu A.
    2020 IEEE KHPI WEEK ON ADVANCED TECHNOLOGY (KHPI WEEK), 2020, : 407 - 410
  • [26] Fiber optical parametric amplifiers in optical communication systems
    Marhic, Michel E.
    Andrekson, Peter A.
    Petropoulos, Periklis
    Radic, Stojan
    Peucheret, Christophe
    Jazayerifar, Mahmoud
    LASER & PHOTONICS REVIEWS, 2015, 9 (01) : 50 - 74
  • [27] Temperature dependence of optical parameters of gallium sulphide
    Ke¸pin´ska, M.
    Nowak, M.
    Szalajko, M.
    Murri, R.
    Journal of Wide Bandgap Materials, 2001, 8 (3-4): : 241 - 249
  • [28] Full polarization control for fiber optical quantum communication systems using polarization encoding
    Xavier, G. B.
    de Faria, G. Vilela
    Temporao, G. P.
    von der Weid, J. P.
    OPTICS EXPRESS, 2008, 16 (03): : 1867 - 1873
  • [29] Temperature dependence of optical parameters of a nanocomposite system
    N R Ramanujam
    K S Joseph Wilson
    V Revathy
    Indian Journal of Physics, 2015, 89 : 1193 - 1197
  • [30] Temperature dependence of optical parameters of a nanocomposite system
    Ramanujam, N. R.
    Wilson, K. S. J.
    Revathy, V.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (11) : 1193 - 1197