STUDIES ON CENTROID TYPE-REDUCTION ALGORITHMS FOR GENERAL TYPE-2 FUZZY LOGIC SYSTEMS

被引:0
|
作者
Chen, Yang [1 ,2 ]
Wang, Dazhi [1 ]
Ning, Wu [1 ,3 ]
机构
[1] Northeastern Univ, Inst Power Syst & Power Drives, 3-11 Wenhua Rd, Shenyang 110819, Liaoning, Peoples R China
[2] Liaoning Univ Technol, Coll Sci, Guta Dist 121001, Jinzhou, Peoples R China
[3] Liaoning Univ Technol, Coll Elect & Informat Engn, Guta Dist 121001, Jinzhou, Peoples R China
基金
美国国家科学基金会;
关键词
General type-2 fuzzy logic systems; alpha-plane; KM algorithm; EKM algorithm; EIASC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generally speaking, Karnik-Mendel algorithm is a standard way to calculate the centroid and perform type-reduction (TR) for interval type-2 fuzzy sets and systems. In this paper, an efficient centroid type-reduction strategy for general type-2 fuzzy sets is introduced based on Karnik-Mendel (KM) algorithm, enhanced Karnik-Mendel (EKM) algorithm, enhanced iterative algorithm+stopping condition (EIASC). The strategy uses the result of alpha-plane representation, performs the centroid type-reduction on each alpha-plane, and expands type-reduction algorithms for general type-2 fuzzy logic systems. Simulations performed and compared by each of three types of algorithms show that they usually need only several resolution of alpha values such that the defuzzified values converge to real values. Compared with the exhaustive computation method, the method can tremendously decrease the computation complexity from exponential into linear. So it provides the potential application value for general type-2 fuzzy logic systems.
引用
收藏
页码:1987 / 2000
页数:14
相关论文
共 50 条
  • [31] A Novel Approach to Type-Reduction and Design of Interval Type-2 Fuzzy Logic Systems
    Starczewski, Janusz T.
    Przybyszewski, Krzysztof
    Byrski, Aleksander
    Szmidt, Eulalia
    Napoli, Christian
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2022, 12 (03) : 197 - 206
  • [32] Towards an efficient type-reduction method for interval type-2 fuzzy logic systems
    Nie, Maowen
    Tan, Woei Wan
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 1427 - 1434
  • [33] PSO type-reduction method for geometric interval type-2 fuzzy logic systems
    赵先章
    高一波
    曾隽芳
    杨一平
    Journal of Harbin Institute of Technology, 2008, 15 (06) : 862 - 867
  • [34] Comparison Study of Iterative Algorithms for Center-of-Sets Type-Reduction of Takagi Sugeno Kang Type General Type-2 Fuzzy Logic Systems
    Chen, Yang
    IEEE ACCESS, 2022, 10 : 105693 - 105701
  • [35] Comparison and Practical Implementation of Type-Reduction Algorithms for Type-2 Fuzzy Sets and Systems
    Dongrui, U.
    Nie, Maowen
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2131 - 2138
  • [36] An improved type-reduction algorithm for general type-2 fuzzy sets
    Wu, Li
    Qian, Fucai
    Wang, Lingzhi
    Ma, Xuehui
    INFORMATION SCIENCES, 2022, 593 : 99 - 120
  • [37] An Extended Type-Reduction Method for General Type-2 Fuzzy Sets
    Xie, Bing-Kun
    Lee, Shie-Jue
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (03) : 715 - 724
  • [38] Study on non-iterative algorithms for center-of-sets type-reduction of Takagi–Sugeno–Kang type general type-2 fuzzy logic systems
    Yang Chen
    Complex & Intelligent Systems, 2023, 9 : 4015 - 4023
  • [39] Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller
    Wu, DR
    Tan, WW
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 353 - 358
  • [40] On type-reduction of type-2 fuzzy sets: A review
    Torshizi, Abolfazl Doostparast
    Zarandi, Mohammad Hossein Fazel
    Zakeri, Hamzeh
    APPLIED SOFT COMPUTING, 2015, 27 : 614 - 627