Viewpoint Evaluation for Online 3-D Active Object Classification

被引:34
|
作者
Patten, Timothy [1 ]
Zillich, Michael [2 ]
Fitch, Robert [1 ]
Vincze, Markus [2 ]
Sukkarieh, Salah [1 ]
机构
[1] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW, Australia
[2] Vienna Univ Technol, Automat & Control Inst, Vision4Robot Grp, Vienna, Austria
来源
基金
澳大利亚研究理事会;
关键词
Object detection; segmentation; categorization; Semantic scene understanding; RGB-D perception;
D O I
10.1109/LRA.2015.2506901
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present an end-to-end method for active object classification in cluttered scenes from RGB-D data. Our algorithms predict the quality of future viewpoints in the form of entropy using both class and pose. Occlusions are explicitly modeled in predicting the visible regions of objects, which modulates the corresponding discriminatory value of a given view. We implement a one-step greedy planner and demonstrate our method online using a mobile robot. We also analyze the performance of our method compared to similar strategies in simulated execution using the Willow Garage dataset. Results show that our active method usefully reduces the number of views required to accurately classify objects in clutter as compared to traditional passive perception.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [21] Attending to the parts of a 3-D object
    Koning, A.
    Wagemans, J.
    PERCEPTION, 2007, 36 : 129 - 129
  • [22] Mimicry of 3-D object rotations
    van Veen, H. A. H. C.
    Kappers, A. M. L.
    Koenderink, J. J.
    van Woerkom, N.
    PERCEPTION, 1996, 25 : 58 - 58
  • [23] 3-D underwater object recognition
    Boulinguez, D
    Quinquis, A
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2002, 27 (04) : 814 - 829
  • [24] 3-D determinants of object completion
    Kellman, PJ
    Machado, LJ
    Shipley, TF
    Li, CC
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1996, 37 (03) : 3133 - 3133
  • [25] Decoupled 3-D object detector
    Arafa M.
    Osama A.
    Abdelaziz M.
    Ghoneima M.
    García F.
    Maged S.A.
    International Journal of Vehicle Autonomous Systems, 2023, 16 (2-4) : 143 - 160
  • [26] Addressing the Sim2Real Gap in Robotic 3-D Object Classification
    Weibel, Jean-Baptiste
    Patten, Timothy
    Vincze, Markus
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 407 - 413
  • [27] Performance Evaluation on 3-D object recognition using a restricted neural network
    Miyanaga, Y
    Motoyoshi, K
    Tochinai, K
    APCCAS '96 - IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS '96, 1996, : 373 - 376
  • [28] Efficient Online Transfer Learning for 3D Object Classification in Autonomous Driving
    Yang, Rui
    Yan, Zhi
    Yang, Tao
    Ruichek, Yassine
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2950 - 2957
  • [29] A 3-D object recognition system based on a rapid 3-D vision system
    Choi, S
    Park, H
    Kim, S
    Park, S
    Won, S
    Jecing, H
    NEW TECHNOLOGIES FOR AUTOMATION OF METALLURGICAL INDUSTRY 2003, 2004, : 269 - 274
  • [30] SparseVoxNet: 3-D Object Recognition With Sparsely Aggregation of 3-D Dense Blocks
    Karambakhsh, Ahmad
    Sheng, Bin
    Li, Ping
    Li, Huating
    Kim, Jinman
    Jung, Younhyun
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 532 - 546