A FINITE-ELEMENT METHOD FOR THE PROBABILISTIC CREEP OF SOLIDS

被引:4
|
作者
DELPH, TJ [1 ]
YUKICH, JE [1 ]
机构
[1] LEHIGH UNIV,DEPT MATH,BETHLEHEM,PA 18015
关键词
D O I
10.1002/nme.1620350603
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We outline here a finite element technique for the creep of solids whose constitutive equation contains one or more random parameters. In contrast to other finite element techniques for the prediction of random structural response, the present method is based upon exact relations from the theory of probability. It yields, at a given value of time, the probability density function for the field variable of interest, e.g. stress or displacement components. The method is illustrated by a simple creeping beam problem, using a power-law creep constitutive equation. The calculated distributions are found to be highly skewed, and in excellent agreement with the results of Monte Carlo simulation.
引用
收藏
页码:1171 / 1182
页数:12
相关论文
共 50 条
  • [31] THE FINITE-ELEMENT METHOD FOR MICROSENSORS
    CRARY, SB
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1986, 133 (11) : C445 - C445
  • [32] Multiscale finite-element method
    Rank, E.
    Krause, R.
    Computers and Structures, 1997, 64 (1-4): : 139 - 144
  • [33] MODIFICATIONS OF THE FINITE-ELEMENT METHOD
    KUKISHEV, VL
    SANKIN, YN
    SOVIET APPLIED MECHANICS, 1982, 18 (07): : 602 - 606
  • [34] The finite-element method (FEM)
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 116: NUMERICAL FIELD CALCULATION FOR CHARGED PARTICLE OPTICS, 2001, 116 : 193 - 261
  • [35] A SEMILINEAR FINITE-ELEMENT METHOD
    SUN, JC
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1985, 3 (02) : 97 - 114
  • [36] FINITE-ELEMENT METHOD FOR GRATINGS
    DELORT, T
    MAYSTRE, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (12): : 2592 - 2601
  • [37] MINIMAX FINITE-ELEMENT METHOD
    PARK, IB
    PILKEY, WD
    JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1982, 108 (05): : 998 - 1011
  • [38] Finite-element method in photoelasticity
    Teslenko, AA
    INDUSTRIAL LABORATORY, 1998, 64 (08): : 529 - 531
  • [39] THE FINITE-ELEMENT METHOD FOR MICROSENSORS
    CRARY, SB
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (11) : 2937 - 2940
  • [40] THE FINITE-ELEMENT ALTERNATING METHOD
    TSAMASPHYROS, G
    THEOTOKOGLOU, EE
    ENGINEERING FRACTURE MECHANICS, 1992, 42 (02) : 405 - 406