PALEY PROJECTIONS ON ANISOTROPIC SOBOLEV SPACES ON TORI

被引:0
|
作者
PELCZYNSKI, A
WOJCIECHOWSKI, M
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An anisotropic Sobolev space L(S)1(T(d)) on the d-dimensional torus T(d) has an invariant complemented subspace isomorphic to an infinite-dimensional Hilbert space it and only if either the smoothness S (a finite subset of R(d) consisting of points with integer-valued non-negative coordinates and containing the origin) contains two points, one corresponding to a partial derivative of even order and the second to a partial derivative of odd order, and there exists a hyperplane passing through these points which supports the convex hull of S and is not parallel to any axis of R(d). or the same property has one of the lower-dimensional smoothnesses being the intersection of S with some number of coordinate hyperplanes. The simplest example of this condition being satisfied is the 2-dimensional smoothness generated by the points corresponding to the partial derivatives D(x) and D(yy).
引用
收藏
页码:405 / 422
页数:18
相关论文
共 50 条
  • [41] AN IMBEDDING THEOREM FOR ANISOTROPIC ORLICZ-SOBOLEV SPACES
    HARDY, G
    THOMPSON, HB
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (03) : 463 - 467
  • [42] An Approximation Result in Generalized Anisotropic Sobolev Spaces and Applications
    Bendahmane, Mostafa
    Chrif, Moussa
    El Manouni, Said
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2011, 30 (03): : 341 - 353
  • [43] Imbeddings of anisotropic Orlicz-Sobolev spaces and applications
    Jain, P
    Lukkassen, D
    Persson, LE
    Svanstedt, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 181 - 195
  • [44] Partial Sobolev spaces and anisotropic smectic liquid crystals
    Pan, Xing-Bin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (3-4) : 963 - 998
  • [45] Theorem of Brezis and Browder type in anisotropic Sobolev spaces
    Youssef Akdim
    Rachid Elharch
    M. C. Hassib
    Soumia Lalaoui Rhali
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 313 - 327
  • [46] Anisotropic equations in weighted Sobolev spaces of higher order
    Chrif M.
    El Manouni S.
    Ricerche di Matematica, 2009, 58 (1) : 1 - 14
  • [47] WEIGHTED ANISOTROPIC SOBOLEV SPACES ON DOMAINS - EXTENSIONS AND TRACES
    TRIEBEL, H
    MATHEMATISCHE NACHRICHTEN, 1984, 119 : 309 - 319
  • [48] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [49] Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak
    Besov, O. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 319 (01) : 43 - 55
  • [50] Nonhomogeneous boundary value problems in anisotropic Sobolev spaces
    Mihailescu, Mihai
    Pucci, Patrizia
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (10) : 561 - 566