SPIRAL DEFECT CHAOS IN A MODEL OF RAYLEIGH-BENARD CONVECTION

被引:74
|
作者
XI, HW
GUNTON, JD
VINALS, J
机构
[1] FLORIDA STATE UNIV,SUPERCOMP COMPUTAT RES INST,TALLAHASSEE,FL 32306
[2] FLORIDA A&M UNIV,COLL ENGN,DEPT CHEM ENGN,TALLAHASSEE,FL 32316
[3] FLORIDA STATE UNIV,COLL ENGN,DEPT CHEM ENGN,TALLAHASSEE,FL 32306
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.71.2030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A numerical solution of a generalized Swift-Hohenberg equation in two dimensions reveals the existence of a spatiotemporal chaotic state comprised of a large number of rotating spirals. This state is observed for a reduced Rayleigh number epsilon = 0.25. The power spectrum of the pattern is isotropic, and the spatial correlation function decays exponentially, with an estimated decay length xi almost-equal-to 2.5lambda(c), where lambda(c) is the critical wavelength near the onset of convection. Our study suggests that this spiral defect state occurs for low Prandtl numbers and large aspect ratios.
引用
收藏
页码:2030 / 2033
页数:4
相关论文
共 50 条
  • [31] Effect of the centrifugal force on domain chaos in Rayleigh-Benard convection
    Becker, Nathan
    Scheel, J. D.
    Cross, M. C.
    Ahlers, Guenter
    PHYSICAL REVIEW E, 2006, 73 (06):
  • [32] LOCAL OSCILLATIONS, TRAVELING WAVES, AND CHAOS IN RAYLEIGH-BENARD CONVECTION
    CILIBERTO, S
    RUBIO, MA
    PHYSICAL REVIEW LETTERS, 1987, 58 (25) : 2652 - 2655
  • [33] SPIRAL-PATTERN FORMATION IN RAYLEIGH-BENARD CONVECTION - COMMENT
    BESTEHORN, M
    NEUFELD, M
    FRIEDRICH, R
    HAKEN, H
    PHYSICAL REVIEW E, 1994, 50 (01): : 625 - 626
  • [34] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    JOURNAL OF FLUID MECHANICS, 2023, 956
  • [35] DYNAMICS OF THE RAYLEIGH-BENARD CONVECTION
    PLATTEN, JK
    LEGROS, JC
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1980, 5 (04) : 243 - 254
  • [36] Multiphase Rayleigh-Benard convection
    Oresta, Paolo
    Fornarelli, Francesco
    Prosperetti, Andrea
    MECHANICAL ENGINEERING REVIEWS, 2014, 1 (01):
  • [37] Homogeneous rayleigh-benard convection
    Calzavarini, E.
    Lohse, D.
    Toschi, F.
    PROGRESS IN TURBULENCE II, 2007, 109 : 181 - +
  • [38] INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    MANNEVILLE, P
    POMEAU, Y
    JOURNAL DE PHYSIQUE LETTRES, 1980, 41 (15): : L341 - L345
  • [39] Rayleigh-Benard convection in limited domains: Part 2 - Transition to chaos
    Bucchignani, E
    Stella, F
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1999, 36 (01) : 17 - 34
  • [40] TURBULENCE IN RAYLEIGH-BENARD CONVECTION - FROM TEMPORAL CHAOS TO SPATIAL EFFECTS
    BERGE, P
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (03): : 371 - 377