Dirichlet problem for Laplace-Beltrami equation on hypersurfaces-FEM approximation

被引:0
|
作者
Buchukuri, Tengiz [1 ]
Duduchava, Roland [1 ]
Tephnadze, George [2 ]
机构
[1] Tbilisi State Univ, A Razmadze Math Inst, Tamarashvili Str 6, GE-0177 Tbilisi, Georgia
[2] Tbilisi State Univ, Fac Exact & Nat Sci, Dept Math, Chavchavadze Str 1, GE-0128 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Hypersurface; Gunter's derivatives; Laplace-Beltrami equation; Finite Element Method;
D O I
10.1016/j.trmi.2016.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Dirichlet boundary value problem for Laplace-Beltrami Equation On Hypersurface l, when the Laplace-Beltrami operator on the surface is described explicitly in terms of Gunter's differential operators. Using the calculus of Gunter's tangential differential operators on hypersurfaces we establish Finite Element Method for the considered boundary value problem and obtain approximate solution in explicit form. (C) 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:300 / 307
页数:8
相关论文
共 50 条
  • [31] A Simple Embedding Method for the Laplace-Beltrami Eigenvalue Problem on Implicit Surfaces
    Lee, Young Kyu
    Leung, Shingyu
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 1189 - 1216
  • [32] FOCUSING PROBLEM AND ASYMPTOTICS OF SPECTRAL-FUNCTION OF LAPLACE-BELTRAMI OPERATOR
    BABICH, VM
    LEVITAN, BM
    DOKLADY AKADEMII NAUK SSSR, 1976, 230 (05): : 1017 - 1020
  • [33] Approximation of point perturbations on finite set of Laplace-Beltrami operator on Riemannian manifold
    Lobanov, Igor
    Lotoreichik, Vladimir
    INTERNATIONAL CONFERENCE ON THEORETICAL PHYSICS 'DUBNA-NANO2008', 2008, 129
  • [34] Regular Potential Approximation for δ-Perturbation Supported by Curve of the Laplace-Beltrami Operator on the Sphere
    Eremin, D. A.
    Ivanov, D. A.
    Popov, I. Yu
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2012, 31 (02): : 125 - 137
  • [35] BMO and Dirichlet Problem for Degenerate Beltrami Equation
    Gutlyanskii V.
    Ryazanov V.
    Sevost’yanov E.
    Yakubov E.
    Journal of Mathematical Sciences, 2022, 268 (2) : 157 - 177
  • [36] An overlapping additive Schwarz preconditioner for the Laplace-Beltrami equation using spherical splines
    Duong Pham
    Thanh Tran
    Crothers, Simon
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 37 (01) : 93 - 121
  • [37] The method of separation of variables for Laplace-Beltrami equation in semi-Riemannian geometry
    Kupeli, DN
    NEW DEVELOPMENTS IN DIFFERENTIAL GEOMETRY, 1996, 350 : 279 - 290
  • [38] An overlapping additive Schwarz preconditioner for the Laplace-Beltrami equation using spherical splines
    Duong Pham
    Thanh Tran
    Simon Crothers
    Advances in Computational Mathematics, 2012, 37 : 93 - 121
  • [39] EIGENVALUES OF THE LAPLACE-BELTRAMI OPERATOR ON A LARGE SPHERICAL CAP UNDER THE ROBIN PROBLEM
    Kabeya, Yoshitsugu
    Kawakami, Tatsuki
    Kosaka, Atsushi
    Ninomiya, Hirokazu
    KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) : 620 - 645
  • [40] Solution of the Dirichlet problem for the Laplace equation
    Medková D.
    Applications of Mathematics, 1999, 44 (2) : 143 - 168