Dirichlet problem for Laplace-Beltrami equation on hypersurfaces-FEM approximation

被引:0
|
作者
Buchukuri, Tengiz [1 ]
Duduchava, Roland [1 ]
Tephnadze, George [2 ]
机构
[1] Tbilisi State Univ, A Razmadze Math Inst, Tamarashvili Str 6, GE-0177 Tbilisi, Georgia
[2] Tbilisi State Univ, Fac Exact & Nat Sci, Dept Math, Chavchavadze Str 1, GE-0128 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Hypersurface; Gunter's derivatives; Laplace-Beltrami equation; Finite Element Method;
D O I
10.1016/j.trmi.2016.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Dirichlet boundary value problem for Laplace-Beltrami Equation On Hypersurface l, when the Laplace-Beltrami operator on the surface is described explicitly in terms of Gunter's differential operators. Using the calculus of Gunter's tangential differential operators on hypersurfaces we establish Finite Element Method for the considered boundary value problem and obtain approximate solution in explicit form. (C) 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:300 / 307
页数:8
相关论文
共 50 条