Ensemble of different improvements in differential evolution for parameter extraction of PEMFC model

被引:0
|
作者
Gong, Wenyin [1 ]
Cai, Zhihua [1 ]
Du, Jun [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
[2] Univ Western Ontario, Dept Comp Sci, London, ON N6A 3K7, Canada
基金
中国国家自然科学基金;
关键词
PEMFC; proton exchange membrane fuel cell; parameter extraction; differential evolution; ensemble;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In order to improve the design of the proton exchange membrane fuel cell (PEMFC) model, in this paper, a modified differential evolution (MDE) method is employed for extracting the unknown parameters of PEMFC model. In MDE, an ensemble of three improvements presented in the differential evolution (DE) literature is implemented. These improvements are: i) opposition-based population initialisation; ii) tournament-based base vector selection; iii) single population structure of DE. To verify the performance of MDE, it is used to solve the parameter extraction problems of PEMFC model. Experimental results indicate that the simulated data of the EPMFC model with the extracted parameters well agrees with the experimental data. In addition, compared with artificial bee colony, the original DE algorithm, and the comprehensive learning particle swarm optimisation, the superiority of MDE is demonstrated.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [1] Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
    Sun, Zhe
    Wang, Ning
    Bi, Yunrui
    Srinivasan, Dipti
    ENERGY, 2015, 90 : 1334 - 1341
  • [2] Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution
    Gong, Wenyin
    Cai, Zhihua
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2014, 27 : 28 - 40
  • [3] Utilizing Differential Evolution for an Automated Compact Model Parameter Extraction
    Huppmann, Marc
    Pieper, Klaus-Willi
    Buzo, Andi
    Maurer, Linus
    Pelz, Georg
    2021 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), 2021, : 231 - 234
  • [4] A systematic model parameter extraction using differential evolution searching
    Chang, Jeesoo
    Oh, Min-Hye
    Park, Byung-Gook
    2019 SILICON NANOELECTRONICS WORKSHOP (SNW), 2019, : 81 - 82
  • [5] Parameter fitting of PEMFC models based on adaptive differential evolution
    Cheng, Jixiang
    Zhang, Gexiang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 62 : 189 - 198
  • [6] Parameter extraction of the photovoltaic model via an improved composite differential evolution
    Qiao, Kangjia
    Liang, Jing
    Yu, Kunjie
    Qu, Boyang
    Yue, Caitong
    Xu, Ruohao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4868 - 4873
  • [7] Parameter extraction of different fuel cell models with transferred adaptive differential evolution
    Gong, Wenyin
    Yan, Xuesong
    Liu, Xiaobo
    Cai, Zhihua
    ENERGY, 2015, 86 : 139 - 151
  • [9] A novel metaheuristic optimizer based on improved adaptive guided differential evolution algorithm for parameter identification of a PEMFC model
    Ge, Yida
    Zhang, Chu
    Liu, Qianlong
    Zhang, Xuedong
    Chen, Jialei
    Nazir, Muhammad Shahzad
    Peng, Tian
    FUEL, 2025, 383
  • [10] An adaptive differential evolution with decomposition for photovoltaic parameter extraction
    Yan, Zhen
    Li, Shuijia
    Gong, Wenyin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 7363 - 7388