A Simple Proof of the Brouwer Fixed Point Theorem

被引:0
|
作者
Dhompongsa, S. [1 ]
Nantadilok, J. [2 ]
机构
[1] Chiang Mai Univ, Dept Math, Fac Sci, Chiang Mai 50200, Thailand
[2] Lampang Rajabhat Univ, Dept Math, Fac Sci, Lampang, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2015年 / 13卷 / 03期
关键词
Brouwer fixed point theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the Brouwer fixed point theorem which is more elementary than all known ones. The only tool we use is the Tietze (continuous) extension theorem. The idea of the proof suggests some successful computation of a fixed point.
引用
收藏
页码:519 / 525
页数:7
相关论文
共 50 条
  • [21] Brouwer Fixed Point Theorem for Disks on the Plane
    Kornilowicz, Artur
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2005, 13 (02): : 333 - 336
  • [23] Brouwer's Fixed Point Theorem and Sparsity
    van de Geer, Sara
    ESTIMATION AND TESTING UNDER SPARSITY: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLV - 2015, 2016, 2159 : 199 - 214
  • [24] Connected choice and the Brouwer fixed point theorem
    Brattka, Vasco
    Le Roux, Stephan
    Miller, Joseph S.
    Pauly, Arno
    JOURNAL OF MATHEMATICAL LOGIC, 2019, 19 (01)
  • [25] COMBINATORIAL EQUIVALENCES OF THE BROUWER FIXED POINT THEOREM
    Tsai, Feng-Sheng
    Lee, Shyh-Nan
    Hsu, Sheng-Yi
    Shin, Mau-Hsiang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (09) : 1913 - 1917
  • [26] On the equivalence of the Arrow impossibility theorem and the Brouwer fixed point theorem
    Tanaka, Y
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 1303 - 1314
  • [27] A topologist's view of the Dunford-Schwartz proof of the Brouwer fixed-point theorem
    Ivanov, NV
    MATHEMATICAL INTELLIGENCER, 2000, 22 (03): : 55 - 57
  • [28] A topologist’s view of the Dunford-Schwartz proof of the brouwer fixed-point theorem
    Nikolai V. Ivanov
    The Mathematical Intelligencer, 2000, 22 : 55 - 57
  • [29] EQUIVALENT FORMS OF THE BROUWER FIXED POINT THEOREM I
    Idzik, Adam
    Kulpa, Wladyslaw
    Mackowiak, Piotr
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 44 (01) : 263 - 276
  • [30] The Brouwer fixed point theorem applied to rumour transmission
    Basener, William
    Brooks, Bernard P.
    Ross, David
    APPLIED MATHEMATICS LETTERS, 2006, 19 (08) : 841 - 842