NUCLEAR AND ELECTRON-DENSITIES OF ANATASE (TIO2)

被引:5
|
作者
SAKATA, M [1 ]
TAKAGI, M [1 ]
TAKATA, M [1 ]
HOWARD, CJ [1 ]
机构
[1] AUSTRALIAN NUCL SCI & TECHNOL ORG,SUTHERLAND,NSW 2234,AUSTRALIA
来源
PHYSICA B | 1995年 / 213卷
关键词
D O I
10.1016/0921-4526(95)00164-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The nuclear-density distribution of anatase (TiO2) is obtained from neutron powder-diffraction data by the maximum-entropy method (MEM). In MEM analysis, no structural model is required. The nuclear-density distribution indicates the smearing of nuclei by thermal motions, which is not necessarily harmonic. In order to show the complementarity of neutron and X-ray diffraction experiments in structural studies, the electron density distribution of anatase is also derived by the MEM. In comparison with the nuclear densities, the MEM electron-density distribution is more broadly distributed, which must represent the more wave-like nature of electrons. In addition, strong covalent bonding between the Ti and O atoms is evident. The thermal smearing may be intuitively understood in terms of the arrangement of the covalent bonds, i.e., isotropic thermal motions for Ti atoms which are octahedrally bonded to six O atoms, and anisotropic motion for the O atom which is bonded to three Ti atoms in a planar triangular configuration. For the O atoms, thermal vibrations perpendicular to the plane of the bonds, which involve bond bending but no bond compression, have the larger amplitudes.
引用
收藏
页码:384 / 386
页数:3
相关论文
共 50 条
  • [41] MEDLA TECHNIQUE CALCULATES ELECTRON-DENSITIES
    BORMAN, S
    CHEMICAL & ENGINEERING NEWS, 1995, 73 (33) : 29 - 29
  • [42] BOUNDS ON THE DECAY OF ELECTRON-DENSITIES WITH SCREENING
    AHLRICHS, R
    HOFFMANNOSTENHOF, M
    HOFFMANNOSTENHOF, T
    MORGAN, JD
    PHYSICAL REVIEW A, 1981, 23 (05) : 2106 - 2117
  • [43] APPROXIMATE ELECTRON-DENSITIES FOR ATOMS AND MOLECULES
    HALL, GG
    MARTIN, D
    ISRAEL JOURNAL OF CHEMISTRY, 1980, 19 (1-4) : 255 - 259
  • [44] High quality anatase TiO2 film:: Field-effect transistor based on anatase TiO2
    Katayama, Masao
    Ikesaka, Shinya
    Kuwano, Jun
    Koinuma, Hideomi
    Matsumoto, Yuji
    APPLIED PHYSICS LETTERS, 2008, 92 (13)
  • [45] Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals
    Yamada, Yasuhiro
    Kanemitsu, Yoshihiko
    APPLIED PHYSICS LETTERS, 2012, 101 (13)
  • [46] Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2
    Mi, Yang
    Weng, Yuxiang
    SCIENTIFIC REPORTS, 2015, 5
  • [47] Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals
    Xiong, Gang
    Shao, Rui
    Droubay, Timothy C.
    Joly, Alan G.
    Beck, Kenneth M.
    Chambers, Scott A.
    Hess, Wayne P.
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (13) : 2133 - 2138
  • [48] Mechanism of Li+/Electron Conductivity in Rutile and Anatase TiO2 Nanoparticles
    Sushko, Maria L.
    Rosso, Kevin M.
    Liu, Jun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (47): : 20277 - 20283
  • [49] TiO2 Anatase Solutions for Electron Transporting Layers in Organic Photovoltaic Cells
    El Kass, Moustafa
    Brohan, Luc
    Gautier, Nicolas
    Bechu, Solene
    David, Celine
    Lemaitre, Noella
    Berson, Solenn
    Richard-Plouet, Mireille
    CHEMPHYSCHEM, 2017, 18 (17) : 2390 - 2396
  • [50] Screening Doping Strategies To Mitigate Electron Trapping at Anatase TiO2 Surfaces
    Carey, John J.
    McKenna, Keith P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (36): : 22358 - 22367