CONVERGENCE PROOF FOR GOLDBERG EXPONENTIAL SERIES

被引:13
|
作者
THOMPSON, RC
机构
关键词
D O I
10.1016/0024-3795(89)90688-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:3 / 7
页数:5
相关论文
共 50 条
  • [1] ERROR IN PROOF OF EXPONENTIAL CONVERGENCE
    DAVIS, BR
    PATTISON, TR
    NEURAL NETWORKS, 1992, 5 (06) : 869 - 869
  • [3] Convergence of the exponential Lie series
    Moan, PC
    Oteo, JA
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) : 501 - 508
  • [4] CONVERGENCE OF SERIES OF EXPONENTIAL MONOMIALS
    Krivosheev, A. S.
    Krivosheeva, O. A.
    UFA MATHEMATICAL JOURNAL, 2022, 14 (04): : 56 - 68
  • [5] SETS OF CONVERGENCE OF EXPONENTIAL SERIES
    BRAUER, GU
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) : 470 - &
  • [6] THE CONVERGENCE DOMAIN FOR SERIES OF EXPONENTIAL MONOMIALS
    Krivosheyeva, O. A.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (02): : 42 - 55
  • [7] CONVERGENCE DOMAIN FOR SERIES OF EXPONENTIAL POLYNOMIALS
    Krivosheyeva, O. A.
    UFA MATHEMATICAL JOURNAL, 2013, 5 (04): : 82 - 87
  • [8] Alternating series convergence: a visual proof
    Hammack, Richard
    Lyons, David
    TEACHING MATHEMATICS AND ITS APPLICATIONS, 2006, 25 (02): : 58 - 60
  • [9] CONVERGENCE AND ULTRA-CONVERGENCE OF EXPONENTIAL SERIES WITH POLYNOMIAL COEFFICIENTS
    BLAMBERT, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (25): : 1227 - 1230
  • [10] Convergence of series of moments on general exponential inequality
    Lita da Silva, Joao
    Lourenco, Vanda
    STATISTICS, 2022, 56 (01) : 73 - 96