CONVERGENCE OF SERIES OF EXPONENTIAL MONOMIALS

被引:0
|
作者
Krivosheev, A. S. [1 ]
Krivosheeva, O. A. [2 ]
机构
[1] RAS, Ufa Fed Res Ctr, Inst Math, Chernyshevsky Str 112, Ufa 450008, Russia
[2] Bashkir State Univ, Zaki Validi Str 32, Ufa 450076, Russia
来源
UFA MATHEMATICAL JOURNAL | 2022年 / 14卷 / 04期
关键词
exponential monomial; convex domain; Abel theorem; Cauchy-Hadamard theorem;
D O I
10.13108/2022-14-4-56
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we study the convergence of series of exponential monomials, special cases of which are the series of exponentials, Dirichlet series and power series. We provide a description of the space of coefficients of series of exponential monomials converging in a given convex domain in the complex plane is described. Under a single natural restriction on the degrees of monomials, we provide a complete analogue of the Abel theorem for such series, which, in particular, implies results on the continued convergence of series of exponential monomials. We also obtain a complete analogue of the Cauchy-Hadamard theorem, in which we give a formula allowing to recover the convergence domain of these series by their coefficients. The obtained results include, as special cases, all previously known results related with the Abel and Cauchy-Hadamard theorems for exponential series, Dirichlet series and power series.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 50 条
  • [1] THE CONVERGENCE DOMAIN FOR SERIES OF EXPONENTIAL MONOMIALS
    Krivosheyeva, O. A.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (02): : 42 - 55
  • [2] SINGULAR POINTS OF THE SUM OF A SERIES OF EXPONENTIAL MONOMIALS ON THE BOUNDARY OF THE CONVERGENCE DOMAIN
    Krivosheyeva, O. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (02) : 321 - 350
  • [3] The distribution of singular points of the sum of a series of exponential monomials on the boundary of its domain of convergence
    Krivosheev, A. S.
    Krivosheeva, O. A.
    SBORNIK MATHEMATICS, 2020, 211 (01) : 55 - 114
  • [4] SINGULAR POINTS FOR THE SUM OF A SERIES OF EXPONENTIAL MONOMIALS
    Krivosheeva, O. A.
    Krivosheev, As
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 : 71 - 86
  • [5] An Existence Domain of the Sum of Exponential Monomials Series
    O. A. Krivosheeva
    A. S. Krivosheev
    Russian Mathematics, 2021, 65 : 51 - 60
  • [6] Domain of Existence of the Sum of a Series of Exponential Monomials
    Krivosheev, A. S.
    Krivosheeva, O. A.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 508 - 521
  • [7] An Existence Domain of the Sum of Exponential Monomials Series
    Krivosheeva, O. A.
    Krivosheev, A. S.
    RUSSIAN MATHEMATICS, 2021, 65 (03) : 51 - 60
  • [8] Domain of Existence of the Sum of a Series of Exponential Monomials
    A. S. Krivosheev
    O. A. Krivosheeva
    Mathematical Notes, 2023, 114 : 508 - 521
  • [9] Representation of functions on a line by a series of exponential monomials
    Krivosheev, A. S.
    Krivosheeva, O. A.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2022, 22 (04): : 416 - 429
  • [10] On the Representation by Series of Exponential Monomials with Almost Real Exponents
    Kuzhaev, A. F.
    Krivosheeva, O. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (05) : 1902 - 1917