NEW DEFINITION OF CONFORMAL AND PROJECTIVE INFINITY OF SPACE-TIMES

被引:17
|
作者
SCHMIDT, BG [1 ]
机构
[1] MAX PLANCK INST PHYS & ASTROPHYS,FOHRINGER RING 6,D-8000 MUNICH 40,WEST GERMANY
关键词
D O I
10.1007/BF01646026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [41] Proper conformal Killing vectors in static plane symmetric space-times
    Hussain, T.
    Khan, S.
    Bokhari, A. H.
    Khan, G. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 191 (01) : 620 - 629
  • [42] SPACE-TIMES WITH CONSTANT VACUUM ENERGY DENSITY AND A CONFORMAL KILLING VECTOR
    HENRIKSEN, RN
    EMSLIE, AG
    WESSON, PS
    PHYSICAL REVIEW D, 1983, 27 (06): : 1219 - 1227
  • [43] CONFORMALLY RECURRENT SPACE-TIMES ADMITTING A PROPER CONFORMAL VECTOR FIELD
    De, Uday Chand
    Mantica, Carlo Alberto
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 29 (02): : 319 - 329
  • [44] A global conformal extension theorem for perfect fluid Bianchi space-times
    Luebbe, Christian
    Tod, Paul
    ANNALS OF PHYSICS, 2008, 323 (12) : 2905 - 2912
  • [45] CONFORMAL YANO-KILLING TENSORS FOR SPACE-TIMES WITH COSMOLOGICAL CONSTANT
    Czajka, Pawel
    Jezierski, Jacek
    ACTA PHYSICA POLONICA B, 2018, 49 (04): : 785 - 817
  • [46] PROPER CONFORMAL-SYMMETRIES OF SPACE-TIMES WITH DIVERGENCE-FREE WEYL CONFORMAL TENSOR
    SHARMA, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) : 3582 - 3587
  • [47] Unified treatment of null and spatial infinity III: asymptotically minkowski space-times
    Ashtekar, Abhay
    Khera, Neev
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (02)
  • [48] STATIONARY AXISYMMETRIC SPACE-TIMES - A NEW APPROACH
    WARD, RS
    GENERAL RELATIVITY AND GRAVITATION, 1983, 15 (02) : 105 - 109
  • [49] A new approach to the dynamics of AdS space-times
    Santos-Olivan, Daniel
    Sopuerta, Carlos F.
    SPANISH RELATIVITY MEETING (ERE 2014): ALMOST 100 YEARS AFTER EINSTEIN'S REVOLUTION, 2015, 600
  • [50] The space of cosmological space-times
    Ellis, GFR
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (02) : 331 - 379