TUNNELING TIMES FOR ONE-DIMENSIONAL SYSTEMS

被引:26
|
作者
GASPARIAN, V
ORTUNO, M
RUIZ, J
CUEVAS, E
POLLAK, M
机构
[1] UNIV MURCIA,DEPT FIS,E-30071 MURCIA,SPAIN
[2] UNIV CALIF RIVERSIDE,DEPT PHYS,RIVERSIDE,CA 92521
[3] YEREVAN STATE UNIV,DEPT PHYS,YEREVAN,ARMENIA
来源
PHYSICAL REVIEW B | 1995年 / 51卷 / 10期
关键词
D O I
10.1103/PhysRevB.51.6743
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We derive a general expression for the tunneling time in layered systems based on the Larmor-clock approach. We show that our results are equivalent to those obtained by the Feynman path-integral technique. We establish a relation between functional derivatives of the barrier potential and partial derivatives with respect to the incident energy. In application, we computed the tunneling time and the reflection time for a rectangular barrier, for a double rectangular barrier, and for a Gaussian potential. © 1995 The American Physical Society.
引用
收藏
页码:6743 / 6746
页数:4
相关论文
共 50 条
  • [21] Boundary Conditions in One-dimensional Tunneling Junction
    Shikano, Yutaka
    Hirokawa, Masao
    INTERNATIONAL SYMPOSIUM: NANOSCIENCE AND QUANTUM PHYSICS 2011 (NANOPHYS'11), 2011, 302
  • [22] TUNNELING RESISTANCE OF A ONE-DIMENSIONAL RANDOM LATTICE
    BARRIE, R
    CARVALHO, ICDS
    CANADIAN JOURNAL OF PHYSICS, 1987, 65 (07) : 760 - 766
  • [23] TUNNELING THROUGH A ONE-DIMENSIONAL POTENTIAL BARRIER
    AHMED, Z
    PHYSICAL REVIEW A, 1993, 47 (06): : 4761 - 4767
  • [24] Reduced mass in the one-dimensional treatment of tunneling
    Truhlar, DG
    Garrett, BC
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (19): : 4006 - 4007
  • [25] THEORY OF NONLINEAR QUANTUM TUNNELING RESISTANCE IN ONE-DIMENSIONAL DISORDERED-SYSTEMS
    LENSTRA, D
    SMOKERS, RTM
    PHYSICAL REVIEW B, 1988, 38 (10): : 6452 - 6460
  • [26] Molecular switching in one-dimensional finite periodic nonadiabatic tunneling potential systems
    Nanbu, S
    Nakamura, H
    Goodman, FO
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (14): : 5445 - 5459
  • [27] One-dimensional to one-dimensional electron resonant tunneling in a double asymmetric quantum-wire structure
    Wang, YQ
    Huang, Q
    Zhou, JM
    APPLIED PHYSICS LETTERS, 1999, 74 (10) : 1412 - 1414
  • [28] POLARONS IN ONE-DIMENSIONAL SYSTEMS
    DEGANI, MH
    HIPOLITO, O
    LOBO, R
    FARIAS, GA
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (16): : 2919 - 2924
  • [29] One-dimensional dynamical systems
    Efremova, L. S.
    Makhrova, E. N.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (05) : 821 - 881
  • [30] OSCILLATIONS OF ONE-DIMENSIONAL SYSTEMS
    PETRINA, DY
    ENOLSKII, VZ
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1976, (08): : 756 - 760