EQUATIONALLY COMPACT SEMILATTICES

被引:0
|
作者
BULMANFL.S
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A506 / &
相关论文
共 50 条
  • [31] Characterizing chain-compact and chain-finite topological semilattices
    Taras Banakh
    Serhii Bardyla
    Semigroup Forum, 2019, 98 : 234 - 250
  • [32] EQUATIONALLY PRECOMPLETE RINGS
    FAJTLOWICZ, S
    SUBRAMAN.H
    SUNDARAR.TR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 630 - +
  • [33] Characterizing chain-compact and chain-finite topological semilattices
    Banakh, Taras
    Bardyla, Serhii
    SEMIGROUP FORUM, 2019, 98 (02) : 234 - 250
  • [34] TOPOLOGICAL SEMILATTICES WITH SMALL SEMILATTICES
    LAWSON, JD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 1 (4P4): : 719 - &
  • [35] ON GRAPHS, THAT ARE NOT EQUATIONALLY NOETHERIAN
    Buchinskiy, Ivan Mikhailovich
    Treyer, Alexander Viktorovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 580 - 587
  • [36] On the Equationally Artinian Groups
    Shahryari, Mohammad
    Tayyebi, Javad
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (05): : 583 - 595
  • [37] FINITE EQUATIONALLY COMPLETE QUASIGROUPS
    CAINE, BR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A723 - A723
  • [38] Equationally defined classes of semigroups
    Higgins, Peter M.
    Jackson, Marcel
    SEMIGROUP FORUM, 2023, 107 (02) : 459 - 477
  • [39] STRUCTURE OF EQUATIONALLY COMPLETE VARIETIES
    PIGOZZI, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A43 - A43
  • [40] ON EQUATIONALLY NOETHERIAN PREDICATE STRUCTURES
    Buchinskiy, Ivan
    Kotov, Matvei
    Treier, Alexander
    GROUPS COMPLEXITY CRYPTOLOGY, 2024, 16 (01)