A 2-DIMENSIONAL MATHEMATICAL-MODEL OF THE CARDING PROCESS

被引:11
|
作者
CHERKASSKY, A
机构
[1] Shenkar College of Textile Technology
关键词
D O I
10.1177/004051759406400307
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
A two-dimensional mathematical model of the carding process considers the longitudinal transport of fibers on the surface of the main cylinder and fiber diffusion in the transverse direction. The weight functions of the dynamic model in the longitudinal and transverse directions are derived, and the two-dimensional transfer function is subsequently obtained on the basis of these weight functions. The state variables method is used to analyze the two-dimensional model; the result is a matrix differential equation that may be used for computer simulation of a carding process and to estimate the smoothing function of carding.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 50 条
  • [21] A SIMPLE 2 ZONE MATHEMATICAL-MODEL OF THE INRED PROCESS
    RAMACHANDRAN, S
    ANANTH, MS
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 1987, 40 (05): : 407 - 414
  • [22] A MATHEMATICAL-MODEL FOR METHYLURACIL PRODUCTION PROCESS
    VEKSLER, MA
    VITVITSKAYA, AS
    KHIMIKO-FARMATSEVTICHESKII ZHURNAL, 1982, 16 (06): : 727 - 729
  • [23] DISCRETE MATHEMATICAL-MODEL OF SPECIATION PROCESS
    KOVROV, BG
    KOSOLAPOVA, LG
    ZHURNAL OBSHCHEI BIOLOGII, 1977, 38 (03): : 359 - 365
  • [24] MATHEMATICAL-MODEL OF NITRIFICATION PROCESS IN SOIL
    PAUL, W
    DOMSCH, KH
    ARCHIV FUR MIKROBIOLOGIE, 1972, 87 (01): : 77 - &
  • [25] A MATHEMATICAL-MODEL OF THE SPRAY DEPOSITION PROCESS
    GUTIERREZMIRAVETE, E
    LAVERNIA, EJ
    TRAPAGA, GM
    SZEKELY, J
    GRANT, NJ
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1989, 20 (01): : 71 - 85
  • [26] A MATHEMATICAL-MODEL FOR THE LEUKOCYTE FILTRATION PROCESS
    BRUIL, A
    BEUGELING, T
    FEIJEN, J
    BIOTECHNOLOGY AND BIOENGINEERING, 1995, 45 (02) : 158 - 164
  • [27] ANALYSIS OF SINTERING PROCESS BY THE MATHEMATICAL-MODEL
    SHIBATA, J
    MATHEMATICAL AND COMPUTER MODELLING, 1988, 11 : 956 - 961
  • [28] AN INTEGRATED MATHEMATICAL-MODEL OF FLOAT PROCESS
    KAMIHORI, T
    IGA, M
    KAKIHARA, S
    MASE, H
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1994, 177 (pt 1) : 363 - 371
  • [29] MATHEMATICAL-MODEL OF NONCATALYZING DIAZOTIZATION PROCESS
    PASSET, BV
    SIDOROV, VA
    KHOLODNO.VA
    KULLE, PA
    ZHURNAL PRIKLADNOI KHIMII, 1973, 46 (08) : 1734 - 1739
  • [30] MATHEMATICAL-MODEL OF THE PROCESS OF OXYTETRACYCLINE BIOSYNTHESIS
    SHNAIDER, LE
    BIRYUKOV, VV
    CHEPIN, EV
    KHIMIKO-FARMATSEVTICHESKII ZHURNAL, 1983, 17 (12): : 1502 - 1507