TRAVELING SALESMAN PROBLEM AND TSALLIS STATISTICS

被引:137
|
作者
PENNA, TJP
机构
[1] Instituto de Física, Universidade Federal Fluminense, 24210 Niterói, Outeiro de Sao Joao Batista, s/n
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 01期
关键词
D O I
10.1103/PhysRevE.51.R1
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A generalization of the stochastic method of simulated annealing algorithm based on Tsallis statistics is proposed. This algorithm is considerably faster than the traditional ones in solving the traveling salesman problem. Acceptable solutions are found in fewer steps and higher temperatures than both the classical and the fast simulated annealings. Recent developments in solving NP-complete problems can be incorporated and improve the performance even more. © 1995 The American Physical Society.
引用
收藏
页码:R1 / R3
页数:3
相关论文
共 50 条
  • [21] NOTE ON TRAVELING SALESMAN PROBLEM
    JONES, L
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (01) : 220 - 222
  • [22] Linearity in the traveling salesman problem
    Colletti, BW
    Barnes, JW
    APPLIED MATHEMATICS LETTERS, 2000, 13 (03) : 27 - 32
  • [23] Colored Traveling Salesman Problem
    Li, Jun
    Zhou, MengChu
    Sun, Qirui
    Dai, Xianzhong
    Yu, Xiaolong
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (11) : 2390 - 2401
  • [24] DIRECTED TRAVELING SALESMAN PROBLEM
    CHAKRABARTI, BK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (07): : 1273 - 1275
  • [25] Risky traveling salesman problem
    Papadakos, Nikolaos
    Tzallas-Regas, George
    Rustem, Berc
    Thoms, Joanne
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 212 (01) : 69 - 73
  • [26] Traveling salesman problem of segments
    Xu, JH
    Yang, Y
    Lin, ZY
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 40 - 49
  • [27] A RELATIVISTIC TRAVELING SALESMAN PROBLEM
    OKEEFE, R
    AMERICAN JOURNAL OF PHYSICS, 1984, 52 (06) : 565 - 565
  • [28] Pyramidal traveling salesman problem
    Baki, MF
    Kabadi, SN
    COMPUTERS & OPERATIONS RESEARCH, 1999, 26 (04) : 353 - 369
  • [29] Animation of the traveling salesman problem
    Department of Mathematics and Computer Science, Stetson University, Deland, FL 32723, United States
    Conf Proc IEEE SOUTHEASTCON, 2012,
  • [30] THE LANDSCAPE OF THE TRAVELING SALESMAN PROBLEM
    STADLER, PF
    SCHNABL, W
    PHYSICS LETTERS A, 1992, 161 (04) : 337 - 344