ANALYSIS ON THE P-ADIC SUPERSPACE .2. DIFFERENTIAL-EQUATIONS ON P-ADIC SUPERSPACE

被引:4
|
作者
KHRENNIKOV, AY
机构
[1] 103498, Moscow Institute of Electronic Technic, Moscow
关键词
D O I
10.1063/1.529691
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Cauchy problem for differential equations on the p-adic superspace is considered. The application of this mathematical theory to the model of the supersymmetric quantum mechanics on the p-adic Riemannian surface is proposed. The non-Archimedean superdiffusion is also considered.
引用
收藏
页码:1643 / 1647
页数:5
相关论文
共 50 条
  • [31] P-adic Measures and P-adic Spaces of Continuous Functions
    Katsaras, A. K.
    NOTE DI MATEMATICA, 2010, 30 (01): : 61 - 85
  • [32] Simultaneous approximation problems of p-adic numbers and p-adic knapsack cryptosystems - Alice in p-adic numberland
    Inoue H.
    Kamada S.
    Naito K.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2016, 8 (4) : 312 - 324
  • [33] A p-Adic Model of Quantum States and the p-Adic Qubit
    Aniello, Paolo
    Mancini, Stefano
    Parisi, Vincenzo
    ENTROPY, 2023, 25 (01)
  • [34] Quantum p-adic spaces and quantum p-adic groups
    Soibelman, Yan
    IN MEMORY OF ALEXANDER REZNIKOV, 2008, 265 : 697 - 719
  • [35] Index theorem of p-adic differential equations (IV)
    Christol, G
    Mebkhout, Z
    INVENTIONES MATHEMATICAE, 2001, 143 (03) : 629 - 672
  • [36] P-ADIC HEIGHT PAIRINGS .2.
    SCHNEIDER, P
    INVENTIONES MATHEMATICAE, 1985, 79 (02) : 329 - 374
  • [37] p-adic differential equations and filtered (φ, N)-modules
    Berger, Laurent
    ASTERISQUE, 2008, (319) : 13 - 38
  • [38] On p-adic differential equations on semistable varieties II
    Di Proietto, Valentina
    Shiho, Atsushi
    MANUSCRIPTA MATHEMATICA, 2015, 146 (1-2) : 179 - 199
  • [39] P-adic differential equations and Gevrey arithmetical series
    Manjra, S
    Remmal, SE
    MATHEMATISCHE ANNALEN, 2006, 334 (01) : 37 - 64
  • [40] On p-adic differential equations on semistable varieties II
    Valentina Di Proietto
    Atsushi Shiho
    Manuscripta Mathematica, 2015, 146 : 179 - 199