THE GENERALIZED CARTAN-AMBROSE-HICKS THEOREM

被引:0
|
作者
BLUMENTHAL, RA
HEBDA, JJ
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:647 / 651
页数:5
相关论文
共 50 条
  • [41] Cartan uniqueness theorem on nonopen sets
    Lebl J.
    Noell A.
    Ravisankar S.
    Complex Analysis and its Synergies, 2022, 8 (3)
  • [42] Extended Cartan fixed point theorem
    Bancha Panyanak
    Watchareepan Atiponrat
    Warunun Inthakon
    Attapol Kaewkhao
    Narawadee Phudolsitthiphat
    Jaturon Wattanapan
    Teerapong Suksumran
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [43] A Cartan–Hartogs version of the polydisk theorem
    Roberto Mossa
    Michela Zedda
    Geometriae Dedicata, 2022, 216
  • [44] Extended Cartan fixed point theorem
    Panyanak, Bancha
    Atiponrat, Watchareepan
    Inthakon, Warunun
    Kaewkhao, Attapol
    Phudolsitthiphat, Narawadee
    Wattanapan, Jaturon
    Suksumran, Teerapong
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (04)
  • [45] Generalized holomorphic Cartan geometries
    Biswas, Indranil
    Dumitrescu, Sorin
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (03) : 661 - 680
  • [46] A theorem of Ambrose for Bakry-Emery Ricci tensor
    Zhang, Shijin
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 45 (03) : 233 - 238
  • [47] A FOLIATED ANALOG OF THE CARTAN-HADAMARD THEOREM
    STUCK, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (08): : 519 - 522
  • [48] THEOREM OF BRAUER-CARTAN-HUA TYPE
    HERSTEIN, IN
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 57 (01) : 177 - 181
  • [49] Correction to: Cartan uniqueness theorem on nonopen sets
    Jiří Lebl
    Alan Noell
    Sivaguru Ravisankar
    Complex Analysis and its Synergies, 2025, 11 (2)
  • [50] Hicks theorem: Effects of technological improvement in the Ricardian model
    Ju, Jiandong
    Yang, Xuebing
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2009, 18 (02) : 239 - 247