FAMILIES OF NEARLY PERFECT PARALLELEPIPEDS

被引:0
|
作者
D'Argenio, Daniel S. [1 ]
Reiter, Clifford A. [1 ]
机构
[1] Lafayette Coll, Easton, PA 18042 USA
关键词
perfect parallelepiped; perfect cuboid;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is unknown whether there are perfect parallelepipeds, that is, parallelepipeds with integer-length edges, face diagonals and body diagonals. A stronger version of the problem also requires the coordinates to be integer. In that case, the vectors are integer-length integer vectors. We will show how to extend integer length integer vectors in any dimension to one higher dimension and utilize that construction to present three parametric families of parallelepipeds that are nearly perfect in the sense that only two conditions need be satisfied in order for the parallelepiped to be perfect. Computer searches show many examples where either, but not both, of those conditions may be satisfied.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [21] Imperfections in Nearly Perfect Crystals
    不详
    LIBRARY JOURNAL, 1952, 77 (16) : 1517 - 1517
  • [22] NEARLY PERFECT REFLECTING MIRRORS
    不详
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 1965, 24 (05): : 258 - &
  • [23] Selection by a nearly perfect examination
    Sandon, F
    ANNALS OF EUGENICS, 1936, 7 : 65 - 85
  • [24] Footprints of the (Nearly) Perfect Liquid
    Tang, Aihong
    NUCLEAR PHYSICS A, 2009, 830 : 673C - 680C
  • [25] NEARLY PERFECT SETS IN GRAPHS
    DUNBAR, JE
    HARRIS, FC
    HEDETNIEMI, SM
    HEDETNIEMI, ST
    MCRAE, AA
    LASKAR, RC
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 229 - 246
  • [26] Perfect and nearly perfect sampling of work-conserving queues
    Xiong, Yaofei
    Murdoch, Duncan J.
    Stanford, David A.
    QUEUEING SYSTEMS, 2015, 80 (03) : 197 - 222
  • [27] Perfect and nearly perfect sampling of work-conserving queues
    Yaofei Xiong
    Duncan J. Murdoch
    David A. Stanford
    Queueing Systems, 2015, 80 : 197 - 222
  • [28] Perfect and nearly perfect separation dimension of complete and random graphs
    Yuster, Raphael
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (11) : 786 - 805
  • [29] VACANCY SOURCE IN NEARLY PERFECT CRYSTALS
    KINO, T
    MIZUNO, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (10) : 3290 - 3292
  • [30] Proper Nearly Perfect Sets in Graphs
    Eslahchi, Ch.
    Maimani, H. R.
    Torabi, R.
    Tusserkani, R.
    ARS COMBINATORIA, 2016, 126 : 143 - 156