A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds

被引:0
|
作者
Biswas, Indranil [1 ]
Pingali, Vamsi Pritham [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
来源
关键词
Finite bundles; astheno-Kdhler manifolds; numerically flat bundles; Uhlenbeck-Yau theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vector bundle on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. Nod proved that a vector bundle E on X is finite if and only if there is a finite etale Galois covering q :( X) over tilde -> X and a Gal(q)-module V, such that E is isomorphic to the quotient of (X) over tilde x V by the twisted diagonal action of Gal(q) [Nol], [No2]. Therefore, E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kdhler metric.
引用
收藏
页数:13
相关论文
共 50 条