A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds

被引:0
|
作者
Biswas, Indranil [1 ]
Pingali, Vamsi Pritham [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
来源
关键词
Finite bundles; astheno-Kdhler manifolds; numerically flat bundles; Uhlenbeck-Yau theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vector bundle on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. Nod proved that a vector bundle E on X is finite if and only if there is a finite etale Galois covering q :( X) over tilde -> X and a Gal(q)-module V, such that E is isomorphic to the quotient of (X) over tilde x V by the twisted diagonal action of Gal(q) [Nol], [No2]. Therefore, E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kdhler metric.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Pseudo-Effective Vector Bundles with Vanishing First Chern Class on Astheno-Kahler Manifolds
    Chen, Yong
    Zhang, Xi
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (06) : 819 - 826
  • [2] ASTHENO-KAHLER STRUCTURES ON CALABI ECKMANN MANIFOLDS
    Matsuo, Koji
    COLLOQUIUM MATHEMATICUM, 2009, 115 (01) : 33 - 39
  • [3] On astheno-Kahler metrics
    Fino, Anna
    Tomassini, Adriano
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 : 290 - 308
  • [4] The Fu-Yau equation on compact astheno-Kahler manifolds
    Chu, Jianchun
    Huang, Liding
    Zhu, Xiaohua
    ADVANCES IN MATHEMATICS, 2019, 346 : 908 - 945
  • [5] On non-Kahler compact complex manifolds with balanced and astheno-Kahler metrics
    Latorre, Adela
    Ugarte, Luis
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 90 - 93
  • [6] On strong Kahler and astheno-Kahler metrics on nilmanifolds
    Rossi, Federico Alberto
    Tomassini, Adriano
    ADVANCES IN GEOMETRY, 2012, 12 (03) : 431 - 446
  • [7] Deformations of astheno-Kahler metrics
    Sferruzza, Tommaso
    COMPLEX MANIFOLDS, 2023, 10 (01):
  • [8] Astheno-Kahler and strong KT metrics
    Fino, Anna
    Tomassini, Adriano
    GEOMETRY AND PHYSICS, 2009, 1130 : 152 - +
  • [9] Astheno-Kahler and Balanced Structures on Fibrations
    Fino, Anna
    Grantcharov, Gueo
    Vezzoni, Luigi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (22) : 7093 - 7117
  • [10] Remarks on astheno-Kahler manifolds, Bott-Chern and Aeppli cohomology groups
    Chiose, Ionut
    Rasdeaconu, Rares
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (03)