A family of global convergent inexact secant methods for nonconvex constrained optimization

被引:0
|
作者
Wang, Zhujun [1 ]
Cai, Li [2 ]
Peng, Zheng [3 ]
机构
[1] Hunan Inst Engn, Coll Sci, Xiangtan 411100, Peoples R China
[2] Shanghai Res Inst Microwave Equipment, Shanghai, Peoples R China
[3] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Constrained optimization; secant methods; nonconvex optimization; inexact method; global convergence;
D O I
10.1177/1748301818762497
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a family of new inexact secant methods in association with Armijo line search technique for solving nonconvex constrained optimization. Different from the existing inexact secant methods, the algorithms proposed in this paper need not compute exact directions. By adopting the nonsmooth exact penalty function as the merit function, the global convergence of the proposed algorithms is established under some reasonable conditions. Some numerical results indicate that the proposed algorithms are both feasible and effective.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 50 条
  • [31] An inexact ADMM for separable nonconvex and nonsmooth optimization
    Bai, Jianchao
    Zhang, Miao
    Zhang, Hongchao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (02) : 445 - 479
  • [32] An inexact modified subgradient algorithm for nonconvex optimization
    Regina S. Burachik
    C. Yalçın Kaya
    Musa Mammadov
    Computational Optimization and Applications, 2010, 45 : 1 - 24
  • [33] An inexact modified subgradient algorithm for nonconvex optimization
    Burachik, Regina S.
    Kaya, C. Yalcin
    Mammadov, Musa
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (01) : 1 - 24
  • [34] A Hybrid and Inexact Algorithm for Nonconvex and Nonsmooth Optimization
    Wang, Yiyang
    Song, Xiaoliang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [35] GLOBALLY CONVERGENT INEXACT NEWTON METHODS
    EISENSTAT, SC
    WALKER, HF
    SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) : 393 - 422
  • [36] On inexact stochastic splitting methods for a class of nonconvex composite optimization problems with relative error
    Hu, Jia
    Han, Congying
    Guo, Tiande
    Zhao, Tong
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (01): : 1 - 33
  • [37] GLOBAL CONVERGENCE OF SPLITTING METHODS FOR NONCONVEX COMPOSITE OPTIMIZATION
    Li, Guoyin
    Pong, Ting Kei
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (04) : 2434 - 2460
  • [38] ADAPTIVE MULTILEVEL INEXACT SQP METHODS FOR PDE-CONSTRAINED OPTIMIZATION
    Ziems, J. Carsten
    Ulbrich, Stefan
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (01) : 1 - 40
  • [39] An accelerated inexact dampened augmented Lagrangian method for linearly-constrained nonconvex composite optimization problems
    Weiwei Kong
    Renato D. C. Monteiro
    Computational Optimization and Applications, 2023, 85 : 509 - 545
  • [40] Global optimization of a class of nonconvex quadratically constrained quadratic programming problems
    Xia, Yong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (09) : 1803 - 1812