AUTOMORPHISMS OF A STRONGLY REGULAR GRAPH WITH PARAMETERS (532,156,30,52)

被引:1
|
作者
Makhnev, A. A. [1 ]
Khamgokova, M. M. [2 ]
机构
[1] NN Krasovsky Inst Math & Meckhan, Str S Kovalevskoy 4, Ekaterinburg 620990, Russia
[2] Kabardino Balkarian State Univ, Nalchik 360000, Russia
关键词
strongly regular graph; automorphism group;
D O I
10.17377/semi.2015.12.078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical strongly regular graph with parameters (532,156,30,52). Let Gamma be a strongly regular graph with parameters (532,156,30,52) and G = Aut(Gamma) be a nonsolvable group acting transitively on the vertex set of Gamma. Then (G) over bar = G/O-2 (G) congruent to J(1), S(G) = O-2 (G) is an irreducible F(2)J(1)-module, vertical bar O-2(G)vertical bar > 2 and (G) over bar (a) congruent to L-2(11).
引用
收藏
页码:930 / 939
页数:10
相关论文
共 50 条