THE GENERAL MINIMUM FILL-IN PROBLEM

被引:0
|
作者
WENDEL, H
机构
来源
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS | 1987年 / 8卷 / 04期
关键词
D O I
10.1137/0608059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:710 / 745
页数:36
相关论文
共 50 条
  • [21] Treewidth and minimum fill-in on permutation graphs in linear time
    Meister, Daniel
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (40-42) : 3685 - 3700
  • [22] Minimum fill-in: Inapproximability and almost tight lower bounds
    Cao, Yixin
    Sandeep, R. B.
    INFORMATION AND COMPUTATION, 2020, 271
  • [23] Minimum Fill-In: Inapproximability and Almost Tight Lower Bounds
    Cao, Yixin
    Sandeep, R. B.
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 875 - 880
  • [24] Minimum Fill-in on Circle and Circular-Arc Graphs
    Faculty of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
    不详
    不详
    不详
    J Algorithms, 2 (272-289):
  • [25] Minimum fill-in on circle and circular-arc graphs
    Kloks, T
    Kratsch, D
    Wong, CK
    JOURNAL OF ALGORITHMS, 1998, 28 (02) : 272 - 289
  • [26] Improved exponential-time algorithms for treewidth and minimum fill-in
    Villanger, Y
    LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 800 - 811
  • [27] Frolic fill-in
    不详
    ABA JOURNAL, 2002, 88 : 18 - 18
  • [28] Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs
    Chang, MS
    ALGORITHMS AND COMPUTATION, 1996, 1178 : 146 - 155
  • [29] Minimum fill-in and treewidth for graphs modularly decomposable into chordal graphs
    Dahlhaus, E
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1998, 1517 : 351 - 358
  • [30] Fill-in regions
    Labenski, C
    Piper, B
    GEOMETRIC MODELLING, 1998, 13 : 189 - 210