ORGANIZATION OF CHAOS IN AREA-PRESERVING MAPS

被引:21
|
作者
DANA, I
机构
[1] Department of Nuclear Physics, Weizmann Institute of Science
关键词
D O I
10.1103/PhysRevLett.64.2339
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaos in area-preserving maps is organized on the basis of the unstable periodic orbits (UPOs) and the partition of phase space into resonances. Each UPO is of a well defined type, which specifies the sequence of resonances visited and the number of rotations performed in a resonance. Chaotic orbits are grouped into sets of well defined type, topological and metric characterizations. The effect of regular motion on global diffusion may be characterized by an infinity of diffusion coefficients, associated with ensembles of chaotic orbits that are trapped in extended sets of resonances. © 1990 The American Physical Society.
引用
收藏
页码:2339 / 2342
页数:4
相关论文
共 50 条
  • [21] Controllability for a class of area-preserving twist maps
    Vaidya, U
    Mezic, I
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 189 (3-4) : 234 - 246
  • [22] Creation of coherent structures in area-preserving maps
    Gupte, Neelima
    Sharma, Ashutosh
    PHYSICS LETTERS A, 2007, 365 (04) : 295 - 300
  • [23] NATURAL BOUNDARIES FOR AREA-PRESERVING TWIST MAPS
    BERRETTI, A
    CELLETTI, A
    CHIERCHIA, L
    FALCOLINI, C
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) : 1613 - 1630
  • [24] Secondary nontwist phenomena in area-preserving maps
    Vieira Abud, C.
    Caldas, I. L.
    CHAOS, 2012, 22 (03)
  • [25] RIGIDITY FOR INFINITELY RENORMALIZABLE AREA-PRESERVING MAPS
    Gaidashev, D.
    Johnson, T.
    Martens, M.
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) : 129 - 159
  • [26] Transport properties in nontwist area-preserving maps
    Szezech, J. D., Jr.
    Caldas, I. L.
    Lopes, S. R.
    Viana, R. L.
    Morrison, P. J.
    CHAOS, 2009, 19 (04)
  • [27] DIFFUSION IN MODELS OF MODULATED AREA-PRESERVING MAPS
    BAZZANI, A
    SIBONI, S
    TURCHETTI, G
    VAIENTI, S
    PHYSICAL REVIEW A, 1992, 46 (10): : 6754 - 6756
  • [28] Visualization of Topological Structures in Area-Preserving Maps
    Tricoche, Xavier
    Garth, Christoph
    Sanderson, Allen
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 1765 - 1774
  • [29] CORRECTIONS TO QUASILINEAR DIFFUSION IN AREA-PRESERVING MAPS
    MURRAY, NW
    LIEBERMAN, MA
    LICHTENBERG, AJ
    PHYSICAL REVIEW A, 1985, 32 (04) : 2413 - 2424
  • [30] SPECTRAL PROPERTIES OF RENORMALIZATION FOR AREA-PRESERVING MAPS
    Gaidashev, Denis
    Johnson, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3651 - 3675