The spectral statistics of triangular quantum billiards

被引:1
|
作者
Bellomo, P
机构
来源
关键词
D O I
10.1142/S0218127495001204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the spectral statistics of three triangular quantum billiards. We show that for an ergodic billiard the nearest neighbor spacings distribution in the low energy regime is strongly influenced by a neighboring integrable domain (equilateral triangle). With increasing energy we observe a transition towards a more chaotic-like pattern. We also show that for all three triangles the properties of the spectral distributions depend heavily on the energy range considered. This is specially true for the spectral rigidity, because of its essentially local character. The features of the distributions do not depend strongly on the genus of classical billiards.
引用
收藏
页码:1599 / 1609
页数:11
相关论文
共 50 条
  • [31] PERIODIC-ORBITS IN TRIANGULAR BILLIARDS
    RUIJGROK, TW
    ACTA PHYSICA POLONICA B, 1991, 22 (11-12): : 955 - 981
  • [32] Quantum billiards with correlated electrons confined in triangular transition metal dichalcogenide monolayer nanostructures
    Ravnik, Jan
    Vaskivskyi, Yevhenii
    Vodeb, Jaka
    Aupic, Polona
    Vaskivskyi, Igor
    Golez, Denis
    Gerasimenko, Yaroslav
    Kabanov, Viktor
    Mihailovic, Dragan
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [33] Quantum billiards with correlated electrons confined in triangular transition metal dichalcogenide monolayer nanostructures
    Jan Ravnik
    Yevhenii Vaskivskyi
    Jaka Vodeb
    Polona Aupič
    Igor Vaskivskyi
    Denis Golež
    Yaroslav Gerasimenko
    Viktor Kabanov
    Dragan Mihailovic
    Nature Communications, 12
  • [34] QUANTUM BILLIARDS
    VONBAEYER, HC
    SCIENCES-NEW YORK, 1991, 31 (04): : 8 - 10
  • [35] Spectral properties of three-dimensional quantum billiards with a pointlike scatterer
    Shigehara, T
    Cheon, T
    PHYSICAL REVIEW E, 1997, 55 (06): : 6832 - 6844
  • [36] The smooth spectral counting function and the total phase shift for quantum billiards
    Smilansky, U
    Ussishkin, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10): : 2587 - 2597
  • [37] Two applications of calculus to triangular billiards
    Gutkin, E
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (07): : 618 - 622
  • [38] New mechanism of chaos in triangular billiards
    Naydenov, S. V.
    Naplekov, D. M.
    Yanovsky, V. V.
    JETP LETTERS, 2013, 98 (08) : 496 - 502
  • [39] Statistics of resonances in open billiards
    Ishio, H
    PHYSICA SCRIPTA, 2001, T90 : 60 - 63
  • [40] On the incenters of triangular orbits on elliptic billiards
    Romaskevich, Olga
    ENSEIGNEMENT MATHEMATIQUE, 2014, 60 (3-4): : 247 - 255