Analysis of Missing Data Using an Empirical Bayesian Method

被引:0
|
作者
Yoon, Yong Hwa [1 ]
Choi, Boseung [1 ]
机构
[1] Daegu Univ, Dept Comp Sci & Stat, 201 Daegudae Ro, Gyongsan 712714, Gyeongsangbuk D, South Korea
关键词
Missing data; non-response; Empirical Bayesian; EM algorithm;
D O I
10.5351/KJAS.2014.27.6.1003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Proper missing data imputation is an important procedure to obtain superior results for data analysis based on survey data. This paper deals with both a model based imputation method and model estimation method. We utilized a Bayesian method to solve a boundary solution problem in which we applied a maximum likelihood estimation method. We also deal with a missing mechanism model selection problem using forecasting results and a comparison between model accuracies. We utilized MWPE(modified within precinct error) (Bautista et al., 2007) to measure prediction correctness. We applied proposed ML and Bayesian methods to the Korean presidential election exit poll data of 2012. Based on the analysis, the results under the missing at random mechanism showed superior prediction results than under the missing not at random mechanism.
引用
收藏
页码:1003 / 1016
页数:14
相关论文
共 50 条
  • [31] Bayesian analysis of longitudinal dyadic data with informative missing data using a dyadic shared-parameter model
    Ahn, Jaeil
    Morita, Satoshi
    Wang, Wenyi
    Yuan, Ying
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (01) : 70 - 83
  • [32] MEG Data Analysis Using the Empirical Mode Decomposition Method
    Skiteva, Lyudmila
    Trofimov, Aleksandr
    Ushakov, Vadim
    Malakhov, Denis
    Velichkovsky, Boris M.
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA) FOR YOUNG SCIENTISTS, 2016, 449 : 135 - 140
  • [33] Longitudinal data analysis using the conditional empirical likelihood method
    Han, Peisong
    Song, Peter X. -K.
    Wang, Lu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (03): : 404 - 422
  • [34] Bayesian Data Analysis in Empirical Software Engineering Research
    Furia, Carlo A.
    Feldt, Robert
    Torkar, Richard
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2021, 47 (09) : 1786 - 1810
  • [35] IMPUTATION OF MISSING DATA USING BAYESIAN PRINCIPAL COMPONENT ANALYSIS ON TEC IONOSPHERIC SATELLITE DATASET
    Subashini, P.
    Krishnaveni, M.
    2011 24TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2011, : 1540 - 1543
  • [36] Bayesian analysis of longitudinal quality of life measures with informative missing data using a selection model
    Ahn, Jaeil
    Ahn, Hye Seong
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (05) : 1354 - 1367
  • [37] Bayesian analysis of longitudinal data via empirical likelihood
    Ouyang, Jiangrong
    Bondell, Howard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [38] Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example
    Knol, Mirjam J.
    Janssen, Kristel J. M.
    Donders, A. Rogier T.
    Egberts, Antoine C. G.
    Heerdink, E. Rob
    Grobbee, Diederick E.
    Moons, Karel G. M.
    Geerlings, Mirjam I.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2010, 63 (07) : 728 - 736
  • [39] Empirical likelihood method for non-ignorable missing data problems
    Guan, Zhong
    Qin, Jing
    LIFETIME DATA ANALYSIS, 2017, 23 (01) : 113 - 135
  • [40] Jackknife empirical likelihood method for multiply robust estimation with missing data
    Chen, Sixia
    Haziza, David
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 127 : 258 - 268