Algebraic Morse theory and homological perturbation theory

被引:0
|
作者
Skoldberg, Emil [1 ]
机构
[1] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
来源
ALGEBRA & DISCRETE MATHEMATICS | 2018年 / 26卷 / 01期
关键词
Algebraic Morse theory; homological perturbation theory; Perturbation Lemma;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the main result of algebraic Morse theory can be obtained as a consequence of the perturbation lemma of Brown and Gugenheim.
引用
收藏
页码:124 / 129
页数:6
相关论文
共 50 条
  • [41] Some perturbation results of Kirchhoff type equations via Morse theory
    Sun M.
    Chen Y.
    Tian R.
    Fixed Point Theory and Applications, 2020 (1)
  • [42] MORSE HOMOTOPY FOR THE SU(2)-CHERN-SIMONS PERTURBATION THEORY
    Shimizu, Tatsuro
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 123 (02) : 363 - 390
  • [43] Application of perturbation theory to the solvability analysis of differential algebraic equations
    Boichuk, A. A.
    Pokutnyi, A. A.
    Chistyakov, V. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (06) : 777 - 788
  • [44] Algebraic perturbation theory for polar fluids: A model for the dielectric constant
    Kalikmanov, VI
    PHYSICAL REVIEW E, 1999, 59 (04): : 4085 - 4090
  • [45] Algebraic Perturbation Theory for Hydrogen Atom in Weak Electric Fields
    A. A. Gusev
    V. N. Samoilov
    V. A. Rostovtsev
    S. I. Vinitsky
    Programming and Computer Software, 2001, 27 : 18 - 21
  • [46] ALGEBRAIC APPROXIMATION IN MANY-BODY PERTURBATION-THEORY
    WILSON, S
    SILVER, DM
    PHYSICAL REVIEW A, 1976, 14 (06): : 1949 - 1960
  • [47] Algebraic perturbation theory for hydrogen atom in weak electric fields
    Gusev, AA
    Samoilov, VN
    Rostovtsev, VA
    Vinitsky, SI
    PROGRAMMING AND COMPUTER SOFTWARE, 2001, 27 (01) : 18 - 21
  • [48] The Gromov-Witten class and a perturbation theory in algebraic geometry
    Mochizuki, T
    AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (02) : 343 - 381
  • [49] Application of perturbation theory to the solvability analysis of differential algebraic equations
    A. A. Boichuk
    A. A. Pokutnyi
    V. F. Chistyakov
    Computational Mathematics and Mathematical Physics, 2013, 53 : 777 - 788
  • [50] Algebraic and differential structures in renormalized perturbation quantum field theory
    Rosenbaum, M
    NON-ASSOCIATIVE ALGEBRA AND ITS APPLICATIONS, 2006, 246 : 365 - 381