APPROXIMATION OF TIME-DEPENDENT FREE BOUNDARIES

被引:3
|
作者
FAGE, D
机构
关键词
D O I
10.1007/BF01400538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:179 / 199
页数:21
相关论文
共 50 条
  • [21] Approximation of time-dependent viscoelastic fluid flow: SUPG approximation
    Ervin, VJ
    Miles, WW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) : 457 - 486
  • [22] Time-Dependent Gutzwiller Approximation: Interplay with Phonons
    G. Seibold
    J. Bünemann
    J. Lorenzana
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 929 - 931
  • [23] Time-dependent Gutzwiller approximation for the Hubbard model
    Seibold, G
    Lorenzana, J
    PHYSICAL REVIEW LETTERS, 2001, 86 (12) : 2605 - 2608
  • [24] A TIME-DEPENDENT BORN-OPPENHEIMER APPROXIMATION
    HAGEDORN, GA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 77 (01) : 1 - 19
  • [25] Vertex corrections and time-dependent GW approximation
    Karlsson, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (26): : 3381 - 3397
  • [26] Time-Dependent Gutzwiller Approximation: Theory and Applications
    Noatschk, K.
    Martens, C.
    Seibold, G.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2020, 33 (08) : 2389 - 2393
  • [27] Time-Dependent Gutzwiller Approximation: Theory and Applications
    K. Noatschk
    C. Martens
    G. Seibold
    Journal of Superconductivity and Novel Magnetism, 2020, 33 : 2389 - 2393
  • [28] Improved Approximation for Time-Dependent Shortest Paths
    Omran, Masoud
    Sack, Joerg-Ruediger
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 453 - 464
  • [29] The time-dependent Born-Oppenheimer approximation
    Panati, Gianluca
    Spohn, Herbert
    Teufel, Stefan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (02): : 297 - 314
  • [30] ACCURACY OF THE SEMICLASSICAL APPROXIMATION FOR THE TIME-DEPENDENT PROPAGATOR
    SCHULMAN, LS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (05): : 1703 - 1721