A DYNAMIC MPI-OPENMP MODEL FOR STRUCTURED ADAPTIVE MESH REFINEMENT

被引:0
|
作者
Rantakokko, Jarmo [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Sci Comp, Box 337, S-75105 Uppsala, Sweden
关键词
OpenMP; PDE; Structured Adaptive Mesh Refinement;
D O I
10.1142/S0129626405002040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compare experimentally different parallelization models using MPI and OpenMP for structured adaptive mesh refinement on a shared-memory parallel computer, a Sun-Fire 15K. Due to the dynamic properties of the mesh no static parallelization model with fixed number of processes and threads performs best in all stages. Different combinations of MPI and OpenMP are preferable in different settings of the application and grid hierarchy. We suggest a new dynamic approach using a mixed MPI-OpenMP model that adapts the number of threads during run time and gives good performance in all stages throughout the whole run as the solution state changes, i.e. the resolution in the computational grid changes.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Relieving the Effects of Uncertainty in Forest Fire Spread Prediction by Hybrid MPI-OpenMP Parallel Strategies
    Artes, Tomas
    Cencerrado, Andres
    Cortes, Ana
    Margalef, Tomas
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2278 - 2287
  • [32] A Hybrid MPI-OpenMP Strategy to Speedup the Compression of Big Next-Generation Sequencing Datasets
    Vargas-Perez, Sandino
    Saeed, Fahad
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2017, 28 (10) : 2760 - 2769
  • [33] A Dynamical Model of the Heliosphere with the Adaptive Mesh Refinement
    Matsumoto, Tomoaki
    Shiota, Daikou
    Kataoka, Ryuho
    Miyahara, Hiroko
    Miyake, Shoko
    13TH INTERNATIONAL CONFERENCE ON NUMERICAL MODELING OF SPACE PLASMA FLOWS (ASTRONUM-2018), 2019, 1225
  • [34] Adaptive mesh refinement for global magnetohydro dynamic simulation
    Gombosi, TI
    De Zeeuw, DL
    Powell, KG
    Ridley, AJ
    Sokolov, IV
    Stout, QF
    Tóth, G
    SPACE PLASMA SIMULATION, 2003, 615 : 247 - 274
  • [35] Lightweight task offloading exploiting MPI wait times for parallel adaptive mesh refinement
    Samfass, Philipp
    Weinzierl, Tobias
    Charrier, Dominic E.
    Bader, Michael
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (24):
  • [36] Application of Block-structured Adaptive Mesh Refinement to Particle Simulation
    Usui, Hideyuki
    Kito, Saki
    Nunami, Masanori
    Matsumoto, Masaharu
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 2527 - 2536
  • [37] Optimal parameter values for a parallel structured adaptive mesh refinement algorithm
    Thuné, M
    Söderberg, S
    APPLIED PARALLEL COMPUTING, PROCEEDINGS: NEW PARADIGMS FOR HPC IN INDUSTRY AND ACADEMIA, 2001, 1947 : 177 - 186
  • [38] A Block-Structured Adaptive Mesh Refinement Solver for Morphodynamic Modeling
    Cowles, Geoffrey W.
    JOURNAL OF COASTAL RESEARCH, 2013, 29 (03) : 727 - 735
  • [39] Hierarchical partitioning techniques for Structured Adaptive Mesh Refinement (SAMR) applications
    Li, XL
    Ramanathan, S
    Parashar, M
    2002 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, PROCEEDINGS OF THE WORKSHOPS, 2002, : 336 - 343
  • [40] Enabling scalable parallel implementations of structured adaptive mesh refinement applications
    Sumir Chandra
    Xiaolin Li
    Taher Saif
    Manish Parashar
    The Journal of Supercomputing, 2007, 39 : 177 - 203