RECENT MATHEMATICAL DEVELOPMENTS ON EMPIRICAL MODE DECOMPOSITION

被引:13
|
作者
Xu, Yuesheng [1 ,2 ]
Zhang, Haizhang [3 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Empirical mode decomposition; the Hilbert-Huang transform; intrinsic mode functions; mathematical foundation; spectral sequences; orthonormal bases; nonlinear phases; the Bedrosian identity;
D O I
10.1142/S1793536909000242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building the mathematical foundation for the empirical mode decomposition is an important issue in adaptive data analysis. The task of building such a foundation consists of two stages. The first is to construct a large bank of basis functions for the time-frequency analysis of nonlinear and nonstationary signals. The second is to establish a fast adaptive decomposition algorithm. We survey recent mathematical progress on these two stages. Related results on piecewise linear spectral sequences and the Bedrosian identity are also reviewed.
引用
收藏
页码:681 / 702
页数:22
相关论文
共 50 条
  • [21] Empirical mode decomposition on surfaces
    Wang, Hui
    Su, Zhixun
    Cao, Junjie
    Wang, Ye
    Zhang, Hao
    GRAPHICAL MODELS, 2012, 74 : 173 - 183
  • [22] GRAPH EMPIRICAL MODE DECOMPOSITION
    Tremblay, Nicolas
    Borgnat, Pierre
    Flandrin, Patrick
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 2350 - 2354
  • [23] Multivariate empirical mode decomposition
    Rehman, N.
    Mandic, D. P.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2117): : 1291 - 1302
  • [24] Empirical Mode Decomposition - An Introduction
    Zeiler, A.
    Faltermeier, R.
    Keck, I. R.
    Tome, A. M.
    Puntonet, C. G.
    Lang, E. W.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [25] Recent developments in empirical dynamic modelling
    Munch, Stephan B.
    Rogers, Tanya L.
    Sugihara, George
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (03): : 732 - 745
  • [26] Recent Developments in Nucleon Spin Decomposition
    Hatta, Yoshitaka
    PROCEEDINGS OF THE 21ST INTERNATIONAL SYMPOSIUM ON SPIN PHYSICS (SPIN2014), 2016, 40
  • [27] Hierarchical decomposition based on a variation of empirical mode decomposition
    Muhammad Kaleem
    Aziz Guergachi
    Sridhar Krishnan
    Signal, Image and Video Processing, 2017, 11 : 793 - 800
  • [28] Hierarchical decomposition based on a variation of empirical mode decomposition
    Kaleem, Muhammad
    Guergachi, Aziz
    Krishnan, Sridhar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (05) : 793 - 800
  • [29] Recent developments in the mode of action of fungicides
    Leroux, P
    PESTICIDE SCIENCE, 1996, 47 (02): : 191 - 197
  • [30] SOME RECENT DEVELOPMENTS ON MATHEMATICAL ASPECT OF WAVELETS
    Manchanda, P.
    Meenakshi
    MATHEMATICS IN SCIENCE AND TECHNOLOGY: MATHEMATICAL METHODS, MODELS AND ALGORITHMS IN SCIENCE AND TECHNOLOGY, 2011, : 373 - 401