RECENT MATHEMATICAL DEVELOPMENTS ON EMPIRICAL MODE DECOMPOSITION

被引:13
|
作者
Xu, Yuesheng [1 ,2 ]
Zhang, Haizhang [3 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Empirical mode decomposition; the Hilbert-Huang transform; intrinsic mode functions; mathematical foundation; spectral sequences; orthonormal bases; nonlinear phases; the Bedrosian identity;
D O I
10.1142/S1793536909000242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building the mathematical foundation for the empirical mode decomposition is an important issue in adaptive data analysis. The task of building such a foundation consists of two stages. The first is to construct a large bank of basis functions for the time-frequency analysis of nonlinear and nonstationary signals. The second is to establish a fast adaptive decomposition algorithm. We survey recent mathematical progress on these two stages. Related results on piecewise linear spectral sequences and the Bedrosian identity are also reviewed.
引用
收藏
页码:681 / 702
页数:22
相关论文
共 50 条
  • [1] Learnable Empirical Mode Decomposition based on Mathematical Morphology
    Velasco-Forero, Santiago
    Pages, R.
    Angulo, Jesus
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (01): : 23 - 44
  • [2] RECENT DEVELOPMENTS IN MATHEMATICAL MORPHOLOGY
    SERRA, J
    ACTA STEREOLOGICA, VOL 6, SUPP 3, PARTS 1-2, 1987, 6 : 643 - 650
  • [3] Baseline normalisation of ECG signals using empirical mode decomposition and mathematical morphology
    Ji, T. Y.
    Lu, Z.
    Wu, Q. H.
    Ji, Z.
    ELECTRONICS LETTERS, 2008, 44 (02) : 82 - 84
  • [4] Edge Detection Using Fast Bidimensional Empirical Mode Decomposition and Mathematical Morphology
    Zhang, James Z.
    Qin, Zijing
    IEEE SOUTHEASTCON 2010: ENERGIZING OUR FUTURE, 2010, : 139 - 142
  • [5] RECENT DEVELOPMENTS IN EMPIRICAL PROCESSES
    PYKE, R
    ADVANCES IN APPLIED PROBABILITY, 1979, 11 (02) : 267 - 268
  • [6] Comparison of performances of variational mode decomposition and empirical mode decomposition
    Yue, Yingjuan
    Sun, Gang
    Cai, Yanping
    Chen, Ru
    Wang, Xu
    Zhang, Shixiong
    ENERGY SCIENCE AND APPLIED TECHNOLOGY (ESAT 2016), 2016, : 469 - 476
  • [7] RECENT DEVELOPMENTS IN THE MATHEMATICAL THEORY OF PLASTICITY
    PRAGER, W
    JOURNAL OF APPLIED PHYSICS, 1949, 20 (03) : 235 - 241
  • [8] Weighted ensemble: Recent mathematical developments
    Aristoff, D.
    Copperman, J.
    Simpson, G.
    Webber, R. J.
    Zuckerman, D. M.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (01):
  • [9] RECENT DEVELOPMENTS IN MATHEMATICAL-PROGRAMMING
    WILLIAMS, HP
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1987, 38 (12) : 1192 - 1192
  • [10] Recent developments in mathematical finance - Preface
    Protter, Philip
    Vares, Maria Eulalia
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (11) : V - V