SAMPLING RATE CONVERSION SYSTEMS USING A NEW GENERALIZED FORM OF THE DISCRETE FOURIER-TRANSFORM

被引:9
|
作者
MURAKAMI, H
机构
[1] Kanazawa Institute of Technology, Ishikawa 921
关键词
D O I
10.1109/78.414771
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A recursive factorization of the polynomial 1 - z(N) leads to an efficient algorithm for the computation of the discrete Fourier transform (DFT) and the cyclic convolution, This paper introduces a new recursive polynomial factorization of the polynomial when N is highly composite. The factorization is used to define a generalized form of the DFT and to derive an efficient algorithm for the computation. The generalized form of the DFT is shown to be closely related to the polyphase decomposition of a sequence, and is applied for the design of sampling rate conversion systems. It gives not only alternative derivations for the polyphase interpolation and the polyphase decimation by an integer factor, but also a new sampling rate conversion system by a rational factor, which is more efficient than the known rational polyphase implementation when the filter length is large.
引用
收藏
页码:2095 / 2102
页数:8
相关论文
共 50 条
  • [41] AN RNS DISCRETE FOURIER-TRANSFORM IMPLEMENTATION
    TAYLOR, FJ
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (08): : 1386 - 1394
  • [42] TABLE OF DISCRETE FOURIER-TRANSFORM PAIRS
    CONOLLY, B
    GOOD, IJ
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) : 810 - 822
  • [43] IMPROVED ALGORITHM FOR THE DISCRETE FOURIER-TRANSFORM
    FROEYEN, M
    HELLEMANS, L
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1985, 56 (12): : 2325 - 2327
  • [44] NEW HYBRID ALGORITHM FOR COMPUTING A FAST DISCRETE FOURIER-TRANSFORM
    REED, IS
    TRUONG, TK
    IEEE TRANSACTIONS ON COMPUTERS, 1979, 28 (07) : 487 - 492
  • [45] GENERALIZED FOURIER-TRANSFORM FOR STRATIFIED MEDIA
    BAHAR, E
    CANADIAN JOURNAL OF PHYSICS, 1972, 50 (24) : 3123 - 3131
  • [47] Generalized central slice theorem perspective on Fourier-transform spectral imaging at a sub-Nyquist sampling rate
    Men, Ting
    Tang, Liyuan
    Tang, Haocheng
    Hu, Yaodan
    Li, Ping
    Su, Jingqin
    Zuo, Yanlei
    Tsai, Cheng-Ying
    Liu, Zhengzheng
    Fan, Kuanjun
    Li, Zhengyan
    OPTICS EXPRESS, 2023, 31 (13) : 22040 - 22054
  • [48] GENERALIZED LENSLESS FOURIER-TRANSFORM HOLOGRAM
    ARSENAULT, HH
    APRIL, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (10) : 1432 - 1433
  • [49] GENERALIZED AMALGAMS, WITH APPLICATIONS TO FOURIER-TRANSFORM
    FEICHTINGER, HG
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (03): : 395 - 409
  • [50] DISCRETE FOURIER-TRANSFORM VIA WALSH TRANSFORM - COMMENT
    TADOKORO, Y
    HIGUCHI, T
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1979, 27 (03): : 295 - 296