CONDITIONS FOR THE UNIQUENESS OF THE OPTIMAL SOLUTION IN LINEAR SEMI-INFINITE PROGRAMMING

被引:5
|
作者
GOBERNA, MA
LOPEZ, MA
机构
[1] Faculty of Sciences, University of Alicante, Alicante
关键词
SEMI-INFINITE PROGRAMMING; OPTIMALITY CONDITIONS; OPTIMAL VALUE FUNCTION; DIFFERENTIABLE CONVEX FUNCTIONS;
D O I
10.1007/BF00940517
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we establish different conditions for the uniqueness of the optimal solution of a semi-infinite programming problem. The approach here is based on the differentiability properties of the optimal value function and yields the corresponding extensions to the general linear semi-infinite case of many results provided by Mangasarian and others. In addition, detailed optimality conditions for the most general problem are supplied, and some features of the optimal set mapping are discussed. Finally, we obtain a dimensional characterization of the optimal set, provided that a usual closedness condition (Farkas-Minkowski condition) holds.
引用
收藏
页码:225 / 246
页数:22
相关论文
共 50 条
  • [31] On generalized semi-infinite programming
    Jan -J. Rückmann
    Juan Alfredo Gómez
    Top, 2006, 14 (1) : 1 - 32
  • [32] On generalized semi-infinite programming
    Rueckmann, Jan-J.
    Gomez, Juan Alfredo
    TOP, 2006, 14 (01) : 1 - 32
  • [33] GENERIC UNIQUENESS OF SADDLE-POINTS IN THE LINEAR SEMI-INFINITE OPTIMIZATION
    TODOROV, MI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1986, 39 (04): : 27 - 29
  • [34] AN INTERIOR POINT ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING
    FERRIS, MC
    PHILPOTT, AB
    MATHEMATICAL PROGRAMMING, 1989, 43 (03) : 257 - 276
  • [35] A perturbation method for solving linear semi-infinite programming problems
    Wang, MH
    Kuo, YE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (4-5) : 181 - 198
  • [36] Stability and well-posedness in linear semi-infinite programming
    Cánovas, MJ
    López, MA
    Parra, J
    Todorov, MI
    SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) : 82 - 98
  • [37] NEW CONSTRAINT QUALIFICATION AND OPTIMALITY FOR LINEAR SEMI-INFINITE PROGRAMMING
    Liu, Yanqun
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (02): : 223 - 232
  • [38] A NEW PRIMAL ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING
    ANDERSON, EJ
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 259 : 108 - 122
  • [39] Sensitivity Analysis in Linear Semi-Infinite Programming via Partitions
    Goberna, M. A.
    Terlaky, T.
    Todorov, M. I.
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (01) : 14 - 26
  • [40] On solving a class of linear semi-infinite programming by SDP method
    Xu, Yi
    Sun, Wenyu
    Qi, Liqun
    OPTIMIZATION, 2015, 64 (03) : 603 - 616