Adaptive Trajectory Tracking Control of a High Altitude Unmanned Airship

被引:3
|
作者
Wu, Yongmei [1 ]
Zhu, Ming [1 ]
Zuo, Zongyu [2 ]
Zheng, Zewei [2 ]
机构
[1] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing, Peoples R China
[2] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
关键词
adaptive control; feedback linearization; trajectory tracking; high-altitude unmanned airships;
D O I
10.4304/jcp.7.11.2781-2787
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nonlinear dynamic model of a high-altitude unmanned airship, expressed by generalized coordinate, was built. A nonlinear compensation was introduced into the control loop to linearize and decouple the nonlinear system globally. In view of the imprecisely known inertia parameters of the airship, an adaptive law was proposed based on the feedback linearization to realize asymptotic tracking of any continuous time-varying desired trajectory from an arbitrary initial condition. The stability of the closed-loop control system was proved via the use of Lyapunov stability theory. Finally, numerical simulation results demonstrate the validity and effectiveness of the proposed adaptive control law.
引用
收藏
页码:2781 / 2787
页数:7
相关论文
共 50 条
  • [41] Adaptive trajectory tracking control of vector propulsion unmanned surface vehicle with disturbances and input saturation
    Sun, Xiaojie
    Wang, Guofeng
    Fan, Yunsheng
    NONLINEAR DYNAMICS, 2021, 106 (03) : 2277 - 2291
  • [42] Variable Gains Control for Unmanned Helicopter Trajectory Tracking
    Chen, Zhi
    Tu, Xiaowei
    Xing, Li
    Fu, Jian
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 2742 - 2748
  • [43] Adaptive Trajectory Tracking Control for Small Unmanned Underwater Vehicles With Prescribed Performance and Dynamic Compensation
    Liang, Hongtao
    Yu, Junzhi
    Li, Huiping
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024,
  • [44] Unmanned Helicopter Trajectory Tracking Control Based on L1 Adaptive and Backstepping Method
    Zheng, Jiang'an
    Guo, Ying
    Zhou, Yaoming
    Meng, Zhijun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2940 - 2946
  • [45] Trajectory tracking control for unmanned helicopter based on RBFNN
    Guo, Yueru
    Lei, Zhongkui
    Yang, Zhuopeng
    Li, Yihang
    Chen, Kuiyu
    Xu, Yanqing
    13TH ASIA CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING, ACMAE 2022, 2023, 2472
  • [46] Trajectory tracking control for micro unmanned aerial vehicles
    Zhai Ruiyong
    Zhang Wendong
    Zhou Zhaoying
    Sang Shengbo
    Li Pengwei
    ADVANCES IN APPLIED SCIENCE AND INDUSTRIAL TECHNOLOGY, PTS 1 AND 2, 2013, 798-799 : 448 - +
  • [47] Robust adaptive neural trajectory tracking control of unmanned surface vessels under input saturation
    Zhu, Guibing
    Du, Jialu
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 3260 - 3265
  • [48] Airship horizontal trajectory tracking control based on Active Disturbance Rejection Control (ADRC)
    Erlin Zhu
    Jinfeng Pang
    Na Sun
    Haitao Gao
    Qinglin Sun
    Zengqiang Chen
    Nonlinear Dynamics, 2014, 75 : 725 - 734
  • [49] Adaptive Trajectory Tracking Control of Unmanned Autonomous Helicopters with Parameter Uncertainties and Disturbances for Geophysical Survey
    Sun, Mengchao
    Wang, Wei
    Huang, Jiangshuai
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 774 - 780
  • [50] Adaptive robust control of unmanned tracked vehicles for trajectory tracking based on constraint modeling and analysis
    Wang, Xiuye
    Wang, Yinlong
    Sun, Qinqin
    Chen, Yu
    Al-Zahran, Ahmed
    NONLINEAR DYNAMICS, 2024, 112 (11) : 9117 - 9135