Reservoir description using a binary level set model

被引:11
|
作者
Nielsen, Lars Kristian [1 ,2 ]
Li, Hongwei [2 ,3 ]
Tai, Xue-Cheng [1 ,4 ]
Aanonsen, Sigurd Ivar [1 ,2 ]
Espedal, Magne [1 ,2 ]
机构
[1] Univ Bergen, Dept Math, N-5020 Bergen, Norway
[2] Univ Bergen, Ctr Integrated Petr Res, N-5020 Bergen, Norway
[3] Capital Normal Univ, Dept Math, Beijing 10037, Peoples R China
[4] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637616, Singapore
关键词
Inverse problems; Reservoir description; Parameter identification; Two phase flow; Level set methods; Augmented Lagrangian optimization; Total variation regularization;
D O I
10.1007/s00791-008-0121-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the inverse problem of permeability estimation for two-phase flow in porous media. In the parameter estimation process we utilize both data from the wells (production data) and spatially distributed data (from timelapse seismic data). The problem is solved by approximating the permeability field by a piecewise constant function, where we allow the discontinuity curves to have arbitrary shape with some forced regularity. To achieve this, we have utilized level set functions to represent the permeability field and applied an additional total variation regularization. The optimization problem is solved by a variational augmented Lagrangian approach. A binary level set formulation is used to determine both the curves of discontinuities and the constant values for each region. We do not need any initial guess for the geometries of the discontinuities, only a reasonable guess of the constant levels is required.
引用
收藏
页码:41 / 58
页数:18
相关论文
共 50 条
  • [31] A Variational Binary Level Set Method for Structural Topology Optimization
    Dai, Xiaoxia
    Tang, Peipei
    Cheng, Xiaoliang
    Wu, Minghui
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (05) : 1292 - 1308
  • [32] Binary Tomography Reconstructions With Stochastic Level-Set Methods
    Wang, L.
    Sixou, B.
    Peyrin, F.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (07) : 920 - 924
  • [33] Preserving the curve evolution property for the binary level set method
    Zhu, Guopu
    Zhang, Shuqun
    Zeng, Qingshuang
    Wang, Changhong
    JOURNAL OF ELECTRONIC IMAGING, 2007, 16 (02)
  • [34] A description of the Shapley value using a binary procedure
    Tellez Tellez, Ivan
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2022, 13 (02): : 40 - 46
  • [35] Binary image description using frequent itemsets
    Khalid Aznag
    Toufik Datsi
    Ahmed El oirrak
    Essaid El bachari
    Journal of Big Data, 7
  • [36] Binary image description using frequent itemsets
    Aznag, Khalid
    Datsi, Toufik
    El Oirrak, Ahmed
    El Bachari, Essaid
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [37] A level set model for image classification
    Samson, C
    Blanc-Féraud, L
    Aubert, G
    Zerubia, J
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 306 - 317
  • [38] A level set model for image classification
    Samson, C
    Blanc-Féraud, L
    Aubert, G
    Zerubia, J
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2000, 40 (03) : 187 - 197
  • [39] Novel level set evolution model
    Key Lab. of Optoelectronic Technique and System, Chongqing University, Chongqing 400030, China
    Yi Qi Yi Biao Xue Bao, 2008, 7 (1365-1369): : 1365 - 1369
  • [40] Landslide susceptibility zonation of Tehri reservoir rim region using binary logistic regression model
    Kumar, Rohan
    Anbalagan, R.
    CURRENT SCIENCE, 2015, 108 (09): : 1662 - 1672