Comprehensive analysis of big data variety landscape

被引:40
|
作者
Abawajy, Jemal [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Parallel & Distributed Comp Lab, Melbourne, Vic, Australia
关键词
big data; taxonomy; analysis; network;
D O I
10.1080/17445760.2014.925548
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Big data presents a remarkable opportunity for organisations to obtain critical intelligence to drive decisions and obtain insights as never before. However, big data generates high network traffic. Moreover, the continuous growth in the variety of network traffic due to big data variety has rendered the network to be one of the key big data challenges. In this article, we present a comprehensive analysis of big data variety and its adverse effects on the network performance. We present taxonomy of big data variety and discuss various dimensions of the big data variety features. We also discuss how the features influence the interconnection network requirements. Finally, we discuss some of the challenges each big data variety dimension presents and possible approach to address them.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 50 条
  • [31] The BigDataEurope Platform - Supporting the Variety Dimension of Big Data
    Auer, Soeren
    Scerri, Simon
    Versteden, Aad
    Pauwels, Erika
    Charalambidis, Angelos
    Konstantopoulos, Stasinos
    Lehmann, Jens
    Jabeen, Hajira
    Ermilov, Ivan
    Sejdiu, Gezim
    Ikonomopoulos, Andreas
    Andronopoulos, Spyros
    Vlachogiannis, Mandy
    Pappas, Charalambos
    Davettas, Athanasios
    Klampanos, Iraklis A.
    Grigoropoulos, Efstathios
    Karkaletsis, Vangelis
    de Boer, Victor
    Siebes, Ronald
    Mami, Mohamed Nadjib
    Albani, Sergio
    Lazzarini, Michele
    Nunes, Paulo
    Angiuli, Emanuele
    Pittaras, Nikiforos
    Giannakopoulos, George
    Argyriou, Giorgos
    Stamoulis, George
    Papadakis, George
    Koubarakis, Manolis
    Karampiperis, Pythagoras
    Ngomo, Axel-Cyrille Ngonga
    Vidal, Maria-Esther
    WEB ENGINEERING (ICWE 2017), 2017, 10360 : 41 - 59
  • [32] GENUS: an ETL tool treating the Big Data Variety
    Souissi, Salwa
    BenAyed, Mounir
    2016 IEEE/ACS 13TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2016,
  • [33] Uncovering the Educational Data Mining Landscape and Future Perspective: A Comprehensive Analysis
    Ozyurt, Ozcan
    Ozyurt, Hacer
    Mishra, Deepti
    IEEE ACCESS, 2023, 11 : 120192 - 120208
  • [34] Addressing big data variety using an automated approach for data characterization
    Georgios Vranopoulos
    Nathan Clarke
    Shirley Atkinson
    Journal of Big Data, 9
  • [35] Big data monetization throughout Big Data Value Chain: a comprehensive review
    Faroukhi, Abou Zakaria
    El Alaoui, Imane
    Gahi, Youssef
    Amine, Aouatif
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [36] Addressing big data variety using an automated approach for data characterization
    Vranopoulos, Georgios
    Clarke, Nathan
    Atkinson, Shirley
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [37] Big data monetization throughout Big Data Value Chain: a comprehensive review
    Abou Zakaria Faroukhi
    Imane El Alaoui
    Youssef Gahi
    Aouatif Amine
    Journal of Big Data, 7
  • [38] Big data spatial analysis of campers' landscape preferences: Examining demand for amenities
    Rice, William L.
    Park, Soyoung
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 292
  • [39] Current landscape and influence of big data on finance
    Md. Morshadul Hasan
    József Popp
    Judit Oláh
    Journal of Big Data, 7
  • [40] Current landscape and influence of big data on finance
    Hasan, Md Morshadul
    Popp, Jozsef
    Olah, Judit
    JOURNAL OF BIG DATA, 2020, 7 (01)