ON SUBSET SUMS OF R-SETS

被引:0
|
作者
LIPKIN, E
机构
[1] School of Mathematical Sciences, Raymund and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University
关键词
D O I
10.1016/0012-365X(93)90378-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite set of distinct integers is called an r-set if it contains at least r elements not divisible by q for each q≥2. Let f(n,r) denote the maximum cardinality of an r-set A ⊂ {1,2,...,n} having no subset sum Σεiai(εi=0 or 1, aiε{lunate}A) equal to a power of two. In this paper estimates for f(n,r) are obtained. We prove that limr→∞ αr=0, where αr=limn→∞ f(n,r) n. This result verifies a conjecture of Erdős and Freiman (1990). © 1993.
引用
收藏
页码:367 / 377
页数:11
相关论文
共 50 条