THE MINIMAL SUPERSYMMETRIC EXTENSION OF WA(N-1)

被引:18
|
作者
HORNFECK, K
机构
[1] King's College, Department of Mathematics, Strand, London
关键词
D O I
10.1016/0370-2693(92)91602-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the minimal supersymmetric extensions of the WAn-1-algebras, which have the bosonic algebra as a subalgebra, can only be consistent for the special central charge c = (n - 1)(3n + 1)/2(2n + 1).
引用
收藏
页码:355 / 360
页数:6
相关论文
共 50 条
  • [21] On explicit birational geometry for minimal n-folds of canonical dimension n-1
    Chen, Meng
    Esser, Louis
    Wang, Chengxi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (01) : 319 - 337
  • [22] The structure of a minimal n-chart with two crossings I: Complementary domains of Γ1 ∨ Γn-1
    Nagase, Teruo
    Shima, Akiko
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (14)
  • [23] Minimal covers of Q+(2n+1, q) by (n-1)-dimensional subspaces
    Eisfeld, J
    Storme, L
    Sziklai, P
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 15 (03) : 231 - 240
  • [24] Equivalences Induced by (n,1), (n,n-1) and (n,k) - Equivalences (1 < k < n-1)
    Chalamani, Sonja B.
    Seweryn-Kuzmanovska, Marzanna J.
    Kotevska, Elena T.
    2023 58TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, ICEST, 2023, : 345 - 348
  • [25] THE NEXT-TO-MINIMAL SUPERSYMMETRIC EXTENSION OF THE STANDARD MODEL REVIEWED
    Maniatis, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (18-19): : 3505 - 3602
  • [26] N VS N-1
    KNAPP, TR
    AMERICAN EDUCATIONAL RESEARCH JOURNAL, 1970, 7 (04) : 625 - 626
  • [27] (n, n(n-1), n-1) Permutation codes based on packing and Mendelsohn designs
    Peng, Li
    ELECTRONICS LETTERS, 2016, 52 (23) : 1916 - 1918
  • [28] Diphoton resonances in a U(1)B-L extension of the minimal supersymmetric standard model
    Lazarides, G.
    Shafi, Q.
    PHYSICAL REVIEW D, 2016, 93 (11)
  • [29] Impacts of the "zero" homologous series, 01(n-1)n and 02(n-1)n
    Yamauchi, H
    Karppinen, M
    PHYSICA C, 2000, 335 (1-4): : 273 - 278
  • [30] The Generation of (n, n(n-1), n-1) Permutation Group Codes for Communication Systems
    Peng, Li
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (07) : 4535 - 4549