REPRESENTING (2N-N) AS A SUM OF SQUARES

被引:0
|
作者
ROBBINS, N [1 ]
机构
[1] SAN FRANCISCO STATE UNIV,SAN FRANCISCO,CA 94132
来源
FIBONACCI QUARTERLY | 1987年 / 25卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:29 / 33
页数:5
相关论文
共 50 条
  • [21] Explicit Lower Bounds Against Ω(n)-Rounds of Sum-of-Squares
    Hopkins, Max
    Lin, Ting-Chun
    2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 662 - 673
  • [22] SUM OF 2 SQUARES
    LORD, G
    FIBONACCI QUARTERLY, 1986, 24 (03): : 280 - 280
  • [23] SUM OF 2 SQUARES
    RUGGLES, ID
    BECKER, W
    KRAVITZ, S
    ZAYACHKO.W
    FORD, LR
    ELLIS, JW
    TROLLOPE, JR
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (01): : 63 - &
  • [24] Analytical evaluation of moments of collision-induced scattering with Lennard-Jones (2n-n) potential
    Somuncu, Elif
    Gokbulut, Melek
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2021, 235 (06): : 805 - 813
  • [25] ZUR KENNTNIS DES SILYLTRIAZENS (ME3SI)2N-N=N-C6H5
    WIBERG, N
    JOO, WC
    ZEITSCHRIFT FUR NATURFORSCHUNG PART B-CHEMIE BIOCHEMIE BIOPHYSIK BIOLOGIE UND VERWANDTEN GEBIETE, 1966, B 21 (12): : 1234 - &
  • [26] Constructing Nγ Latin squares for γ ≠ 2α
    Natl Chiao-Tung Univ, Hsinchu, Taiwan
    Journal of Information Science and Engineering, 1997, 13 (04): : 605 - 613
  • [27] 如何求sum (π/(2~n)tanπ/(2~n)) from n=2 to ∞的值
    张乃书
    中学教学参考, 2012, (17) : 28 - 29
  • [28] A NEW SUM FOR N2
    FONG, PYC
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (08): : 795 - 797
  • [29] Explicit Lower Bounds Against O(n)-Rounds of Sum-of-Squares
    Hopkins, Max
    Lin, Ting-Chun
    Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2022, 2022-October : 662 - 673
  • [30] Second virial coefficient for a Lennard-Jones (2n-n) system in d dimensions and confined to a nanotube surface
    Glasser, ML
    PHYSICS LETTERS A, 2002, 300 (4-5) : 381 - 384