Vector norm inequalities for power series of operators in Hilbert spaces

被引:2
|
作者
Chenung, W. S. [1 ]
Dragomir, S. S. [2 ,3 ]
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Victoria Univ, Sch Engn & Sci, Math, Melbourne, Vic 8001, Australia
[3] Univ Witwatersrand, Sch Computat & Applied Math, ZA-2050 Johannesburg, South Africa
来源
TBILISI MATHEMATICAL JOURNAL | 2014年 / 7卷 / 02期
关键词
Bounded linear operators; Hilbert spaces; Functions of operators; Power series; Hermite-Hadamard type inequalities;
D O I
10.2478/tmj-2014-0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, vector norm inequalities that provides upper bounds for the Lipschitz quantity parallel to f (T) x - f (V) x parallel to for power series f(z) = Sigma(infinity)(n=0) a(n)z(n), bounded linear operators T,V on the Hilbert space H and vectors x epsilon H are established. Applications in relation to Hermite-Hadamard type inequalities and examples for elementary functions of interest are given as well.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 50 条
  • [21] Norm and numerical radius inequalities for Hilbert space operators
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 1393 - 1400
  • [22] Some norm inequalities for accretive Hilbert space operators
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (02): : 327 - 340
  • [23] Norm inequalities for the absolute value of Hilbert space operators
    Shebrawi, Khalid
    Albadawi, Hussien
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (04): : 453 - 463
  • [24] Norm and numerical radius inequalities for Hilbert space operators
    Baharak Moosavi
    Mohsen Shah Hosseini
    The Journal of Analysis, 2023, 31 : 1393 - 1400
  • [25] Norm and numerical radius inequalities for Hilbert space operators
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05): : 934 - 945
  • [26] Inequalities for the numerical radius, the norm and the maximum of the real part of bounded linear operators in Hilbert spaces
    Dragomir, S. S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) : 2980 - 2994
  • [27] Inequalities for operators and operator pairs in Hilbert spaces
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    Minculete, Nicusor
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [28] EXTENSION FORMULAS AND NORM INEQUALITIES IN SOBOLEV HILBERT SPACES
    Saitoh, Saburou
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 489 - 497
  • [29] VECTOR AND OPERATOR TRAPEZOIDAL TYPE INEQUALITIES FOR CONTINUOUS FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES
    Dragomir, Sever S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 161 - 178
  • [30] Some Vector Inequalities for Continuous Functions of Self-Adjoint Operators in Hilbert Spaces
    SS Dragomir
    Journal of Inequalities and Applications, 2011