COMPLETION OF PARTIAL LATIN SQUARES

被引:3
|
作者
WELLS, AL [1 ]
机构
[1] CALTECH, PASADENA, CA 91125 USA
关键词
D O I
10.1016/0097-3165(77)90005-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [41] SPECTRUM OF PARTIAL ADMISSIBILITY OF FINITE QUASIGROUPS (LATIN SQUARES)
    BELYAVSKAYA, GB
    MATHEMATICAL NOTES, 1982, 32 (5-6) : 874 - 880
  • [42] RELATED NECESSARY CONDITIONS FOR COMPLETING PARTIAL LATIN SQUARES
    GILES, R
    OYAMA, T
    TROTTER, LE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (01) : 20 - 31
  • [43] Completing partial latin squares: Cropper's question
    Bobga, B. B.
    Goldwasser, J. L.
    Hilton, A. J. W.
    Johnson, P. D., Jr.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 127 - 151
  • [44] A SOLUTION TO THE EMBEDDING PROBLEM FOR PARTIAL IDEMPOTENT LATIN SQUARES
    ANDERSEN, LD
    HILTON, AJW
    RODGER, CA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 26 (AUG): : 21 - 27
  • [45] Latin squares with maximal partial transversals of many lengths
    Evans, Anthony B.
    Mammoliti, Adam
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180
  • [46] A polynomial embedding of pairs of orthogonal partial Latin squares
    Donovan, Diane M.
    Yazici, Emine Sule
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 24 - 34
  • [47] FINITE EMBEDDING THEOREMS FOR PARTIAL LATIN SQUARES, QUASIGROUPS, AND LOOPS
    LINDNER, CC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 394 - &
  • [48] A PARTIAL GENERALIZATION OF MANN THEOREM CONCERNING ORTHOGONAL LATIN SQUARES
    PARKER, ET
    SOMER, L
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1988, 31 (04): : 409 - 413
  • [49] Completion of partial Latin Hypercube Designs: NP-completeness and inapproximability
    Le Guiban, Kaourintin
    Rimmel, Arpad
    Weisser, Marc-Antoine
    Tomasik, Joanna
    THEORETICAL COMPUTER SCIENCE, 2018, 715 : 1 - 20
  • [50] ON THE ADDITIVE COMPLETION OF SQUARES
    BALASUBRAMANIAN, R
    JOURNAL OF NUMBER THEORY, 1988, 29 (01) : 10 - 12